Unit Two: Developing Understanding in Mathematics
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Developing Understanding in Mathematics

	After working through this unit you should be able to:
· Critically reflect on the constructivist approach as an approach to learning mathematics.
· Cite with understanding some examples of constructed learning as opposed to rote learning.

· Explain with insight the term 'understanding' in terms of the measure of quality and quantity of connections.

· Motivate with insight the benefits of relational understanding.

· Distinguish and explain the difference between the two types of knowledge in mathematics: conceptual knowledge and procedural knowledge.

· Critically discuss the role of models in developing understanding in mathematics (using a few examples).

· Motivate for the three related uses of models in a developmental approach to teaching.

· Describe the foundations of a developmental approach based on a constructivist view of learning.

· Evaluate the seven strategies for effective teaching based on the perspectives of this chapter.


2.1 
Introduction
In recent years there has been an interesting move away from the idea that teachers can best help their learners to learn mathematics by deciding in what order and through what steps new material should be presented to learners. It has become a commonly accepted goal among mathematics educators that learners should understand mathematics. 

· A widely accepted theory, known as constructivism, suggests that learners must be active participants in the development of their own understanding.

· Each learner, it is now believed, constructs his/her own meaning in his/ her own special way.

· This happens as learners interact with their environment, as they process different experiences and as they build on the knowledge (or schema) which they already have.

Njisane (1992) in Mathematics Education explains that learners never mirror or reflect what they are told or what they read: It is in the nature of the human mind to look for meaning, to find regularity in events in the environment whether or not there is suitable information available. The verb ‘to construct’ implies that the mental structures (schemas) the child ultimately possesses are build up gradually from separate components in a manner initially different from that of an adult.

Constructivism derives from the cognitive school of psychology and the theories of Piaget and first began to influence the educational world in the 1960s. More recently, the ideas of constructivism have spread and gained strong support throughout the world, in countries like Britain, Europe, Australia and many others.

Here in South Africa, the constructivist theory of mathematics learning has been strongly supported by researchers, by teachers and by the education departments. Important work on the new ideas has been done by the Research Unit for Mathematics Education at the University of Stellenbosch. This led to the so-called Problem-centred Approach which was implemented in the Foundation, Intermediate and Senior Primary phases in many South African schools. 
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Constructivism provides the teachers with insights concerning how children learn mathematics and guides us to use instructional strategies developmentally, that begin with the children and not ourselves. This chapter focuses on understanding mathematics from a constructivist perspective and reaping the benefits of relational understanding of mathematics, that is, linking procedural and conceptual knowledge to set the foundations of a developmental approach.

2.2 
A Constructivist View of Learning
The constructivist view requires a shift from the traditional approach of direct teaching to facilitation of learning by the teacher. Teaching by negotiation has to replace teaching by imposition; learners have to be actively involved in ‘doing’ mathematics. Constructivism rejects the notion that children are 'blank slates' with no ideas, concepts and mental structures. They do not absorb ideas as teachers present them, but rather, children are creators of their own knowledge. The question you should be asking now is: How are ideas constructed by the learners? 
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Read through the instructions carefully and then complete the task using your own experience of being a learner of mathematics.  You can photocopy the page and place it in your journal.
	Constructing ideas: the best approach

Instructing learners to memorize rules. 

Explaining the rules /concepts to the learners

Repetitive drilling of facts /rules/principles

Providing opportunities to learners to give expressions to their personal constructions.

Providing a supportive environment where learners feel free to share their initiative conclusions and constructions.

Providing problem-solving approaches to enhance the learner construction of knowledge.

Providing for discovery learning which results from learner manipulating, structuring so that he or she finds new information.

Using games to learn mathematics.

Read through the following approaches that a teacher may employ to help learners to construct concepts, rules or principles. 
Think about it for a while and then rate each approach from 1 to 4 to indicate its effectiveness in constructing meaningful ideas for the learner.

In the box next to the stated approach, write 1, 2, 3 or 4:

1 means that the approach is not effective.

2 means that the approach is partially effective.

3 means that the approach is effective.

4 means that the approach is very effective.
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STOP AND THINK!

With your study partner or a colleague, reflect on the following questions:

· What criteria did you use in rating the above approaches?

· In each of the above approaches, consider the extent to which all learners are involved in 'doing' mathematics.
[image: image26.wmf]
[image: image27.wmf]
The construction of ideas

The basic feature of constructivism is simply this: Children construct their own knowledge. 
Van de Walle (2004) claims that it is not just children who do this. Everyone is involved all the time in making meaning and constructing their own understanding of the world. 
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The constructivist approach views the learner as someone with a certain amount of knowledge already inside his or her head, not as an empty vessel which must be filled. The learner adds new knowledge to the existing knowledge by making sense of what is already inside his or her head. We, therefore, infer that the constructive process is one in which an individual tries to organize, structure and restructure his / her experiences in the light of available schemes of thought. In the process these schemes are modified or changed. Njisane (1992) explains that concepts, ideas, theories and models as individual constructs in the mind are constantly being tested by individual experiences and they last as long as they are interpreted by the individual. No lasting learning takes place if the learner is not actively involved in constructing his or her knowledge.

Piaget (Farrell: 1980) insists that knowledge is active, that is, to know an idea or an object requires that the learner manipulates it physically or mentally and thereby transforms (or modifies) it. According to this concept, when you want to solve a problem relating to finance, in the home or at the garage or at the church, you will spontaneously and actively interact with the characteristics of the real situation that you see as relevant to your problem.
For example, a banker, faced with a business problem, may 'turn it over in his mind', he may prepare charts or look over relevant data, and may confer with colleagues ( in so doing, he transforms the set of ideas in a combination of symbolic and concrete ways and so understands or 'knows' the problem.

Van de Walle (2004: 23) explains that the tools we use to build understanding are our existing ideas, the knowledge that we already possess. The materials we act on to build understanding may be things we see, hear or touch ( elements of our physical world. Sometimes the materials are our own thoughts and ideas ( to build our mental constructs upon. The effort that must be supplied by the learner is active and reflective thought. If the learner's mind is not actively thinking, nothing happens.
In order to construct and understand a new idea, you have to think actively about it. Mathematical ideas cannot be 'poured into' a passive learner with an inactive mind. Learners must be encouraged to wrestle with new ideas, to work at fitting them into existing networks of ideas, and to challenge their own ideas and those of others.

Van de Walle (2004) aptly uses the term 'reflective thought' to explain how learners actively think about or mentally work on an idea. He says: 

Reflective thought means sifting through existing ideas to find those that seem to be the most useful in giving meaning to the new idea. 
Through reflective thought, we create an integrated network of connections between ideas (also referred to as cognitive schemas). As we are exposed to more information or experience, the networks are added to or changed – so our cognitive or mental schemas are always being modified to include new ideas. 

Van de Walle (2004: 25) gives an example of the web of association that contributes to the understanding of ‘ratio’.  Take a look at it on the following page!
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FOR YOU TO DO!
	Cognitive schema: a network of connections between ideas.
Select a particular skill (with operations, addition of fractions for example) that you would want your learners to acquire with understanding.
Develop a cognitive schema (mental picture) for the newly emerging concept (or rule).

When doing this task, think about the following:

· Develop a network of connections between existing ideas (eg whole numbers, concept of a fraction, operations etc).
· Add the new idea (addition of fractions for example).
· Draw in the connecting lines between the existing ideas and the new ideas used and formed during the acquisition of the skill.
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Piaget claims that when a person interacts with an experience/situation/idea, one of two things happens. Either the new experience is integrated into his existing schema (a process called assimilation) or the existing schema has to be adapted to accommodate the new idea/experience (a process called adaptation). 
Van de Walle (2004) explains: 
· Assimilation refers to the use of an existing schema to give meaning to new experiences. You may try to match the new ideas to ones you already possess and seem to be similar.

· Accommodation is the process of altering existing ways of seeing things or ideas that do not fit into existing schemata. It involves ‘patching’ prior cognitive structures in relation to new ideas. Through reflective thought existing schemata may be modified.
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STOP AND THINK!

Daniel, a learner in grade 4, gives the following incorrect response 
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1) Explain the conceptual error made by the learner

2) Think about the mental construct (or idea) that needs to be modified by the learner to overcome this misconception? (Think of the addition of whole numbers and so on.)

3) Describe a useful constructive activity that Daniel could engage in to remedy the misconception. (He could use drawings, counters etc)

Examples of constructed learning
When learners construct their own conceptual understanding of what they are being taught, they will not always produce solutions that look the same. The teacher needs to be open to evaluating the solution of the learner as it has been presented. Computational proficiency and speed are not always the goal. Rather confidence, understanding and a belief in their ability to solve a problem should be valued. 
[image: image32.wmf]Consider the following two solutions to a problem which are presented by Van de Walle (2005): 
Both solutions are correct and demonstrate conceptual understanding on behalf of the learners. 
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STOP AND THINK!

Take a look at the calculation the learner made in the example below and then answer the questions that follow:
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1) What calculation error did the child make in subtraction?

2) What conceptual error did the child make? (Think of place-value concepts).

3) Was the rule 'borrow from the next column' clearly understood by the child?  Explain your answer.

4) In many instances, children's existing knowledge is incomplete or inaccurate ( so they invent incorrect meaning. Explain the subtraction error in the light of the above statement.

Construction in rote learning

All that you have read so far shows that learning and thinking should not be separated from each other (especially in mathematics). In many classrooms, reflective thought (or active thinking) is still very much replaced by learning with the focus on the acquisition of specific skills, facts and the memorizing of information, rules and procedures, most of which is very soon forgotten once the immediate need for its retention is passed.

A learner needs information, concepts, ideas, or a network of connected ideas in order to think and he will think according to the knowledge he already has at his disposal (in his cognitive schemata). The dead weight of facts learnt off by heart, by memory without thought to meaning (that is rote learning), robs the learner of the potential excitement of relating ideas or concepts to one another and the possibility of divergent and creative thinking (Grossmann:1986). 
Constructivism is a theory about how we learn. So, even rote learning is a construction. However, the tools or ideas used for this construction in rote learning are minimal. You may well ask: To what extent is knowledge learned by rote connected?  Sadly the answer to this question is that what is inflicted on children, in many cases, is the manipulation of symbols, having little or no attached meaning as a result of rote-memorized rules. 
This makes learning much more difficult because rules are much harder to remember than integrated conceptual structures which are made up of a network of connected ideas.

According to the traditional view, mathematics is regarded as a tool subject consisting of a series of computational skills: the rote learning of skills is all-important with rate and accuracy the criteria for measuring learning. This approach, labelled as the 'drill theory', was described by William Brawnell (Paul Trapton: 1986) as follows:

Arithmetic consists of a vast host of unrelated facts and relatively independent skills. The pupil acquires the facts by repeating them over and over again until he is able to recall them immediately and correctly. He develops the skills by going through the processes in question until he can perform the required operations automatically and accurately. The teacher need give little time to instructing the pupil in the meaning of what he is learning.

There are numerous weaknesses with this approach:

· Learners perform poorly, neither understanding nor enjoying the subject;

· They are unable to apply what they have learned to new situations; they soon forget what they have learned;

· Learning occurs in a vacuum; the link to the real world is rarely made;

· Little attention is paid to the needs, interest and development of the learner;
· Knowledge learned by rote is hardly connected to the child’s existing ideas (that is, the child's cognitive schemata) so that useful cognitive networks are not formed - each newly formed idea is isolated;
· Rote learning will almost never contribute to a useful network of ideas. 
Rote learning can be thought of as a 'weak construction'.

Understanding
We are now in a position to say what we mean by understanding. Grossman (1986) explains that to understand something means to assimilate it into an appropriate schema (cognitive structure). Recall that assimilation refers to the use of an existing schema (or a network of connected ideas) to give meaning to new experiences and new ideas. It is important to note that the assimilation of information or ideas to an inappropriate (faulty, confusing, or incorrect) schema will make the assimilation to later ideas more difficult and in some cases perhaps impossible (depending on how inappropriate the schema is).
Grossmann (1986) cites another obstacle to understanding: the belief that one already understands fully - learners are very often unaware that they have not understood a concept until they put it into practice. How often has a teacher given a class a number of similar problems to do (after demonstrating a particular number process on the board) only to find a number of children who cannot solve the problems? Those children thought that they understood, but they did not. 
The situation becomes just as problematic when there is an absence of a schema. That is, no schema to assimilate to, just a collection of memorised rules and facts. For teachers in the junior primary phase the danger lies in the fact that mechanical computation can obscure the fact that schemata are not being constructed or built up, especially in the first few years - this, to the detriment of the learners’ understanding in later years. 
Van de Walle (2004) defines understanding as 
the measure of the quality and quantity of connections that an idea has with existing ideas. Understanding depends on the existence of appropriate ideas and the creation of new connections. 
The greater the number of appropriate connections to a network of ideas, the better the understanding will be. 
DID YOU KNOW?
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A person’s understanding exists along a continuum. At one pole, an idea is associated with many others in a rich network of related ideas. This is the pole of so-called ‘relational understanding’. At the other, the ideas are loosely connected, or isolated from each other. This is the pole of so-called ‘instrumental understanding’. 
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Knowledge learned by rote is almost always at the pole of instrumental understanding - where ideas are nearly always isolated and disconnected. 

Grossman (1986) draws attention to one of Piaget’s teaching and learning principles: the importance of the child learning by his or her own discovery. When learners come to knowledge through self discovery, the knowledge has more meaning because discovery facilitates the process of building cognitive structures (constructing a network of connected ideas). Recall of information (concepts, procedures) is easier than recall of unrelated knowledge transmitted to the learner. 
Through the process of discovery (or investigation), a learner passes through a process of grasping the basic relations (or connections) of an event while discarding irrelevant relations and so he or she arrives at a concept (idea) together with an understanding of the relations that give the concept meaning: the learner can, therefore, go on to handle and cope with a good deal of meaningful new, but in fact highly related information.

We infer from the above that the learner arrives at a concept that is derived from a schema (a network of connected ideas) rather than from direct instruction from the teacher. This produces the kind of learner who is independent, able to think, able to express ideas, and solve problems. This represents a shift to learner centeredness ( where learners are knowledge developers and users rather than storage systems and performers (Grossman: 1986).

Examples of understanding
Understanding is about being able to connect ideas together, rather than simply knowing isolated facts. The question 'Does the learner know it?' must be replaced with 'How well does the learner understand it?' The first question refers to instrumental understanding and the second leads to relational understanding. Memorising rules and using recipe methods diligently in computations is knowing the idea. Where the learner connects a network of ideas to form a new idea and arrive at solutions, this is 'understanding the idea' and contributes to how a learner understands.

Let’s illustrate this with an example. Look at the subtraction skill involved in the following:

15

( 6

     .
Reflect on the thought processes at different places along the understanding continuum (that is, the continuous closing of 'gaps' for the understanding of the idea at hand).
CONTINUUM OF UNDERSTANDING
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IDEA A
Instrumental understanding ( concept of subtraction is isolated, vague or flawed

IDEA B
Concept of whole numbers (including the skill involved in counting) 

IDEA C
Existing concept of the operation 'addition' and its application to the whole numbers (e.g. 4 + 11 = 15 and so on).

IDEA D
Addition and subtraction are opposite operations 

(e.g. if 5 + 4 = 9, then 9 ( 4 = 5 or 9 ( 5 = 4).
IDEA E
Relational understanding of the operation subtraction.
Three strategies are shown below indicating the connecting ideas required for 15 ( 9 = 6.
Strategy 1: Start with 6 and work up to 10. 

That is, 6 and 4 more is 10, and 5 more makes 15. The difference between 6 and 15 is 
4 + 5 = 9

[image: image38.wmf]
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Strategy 2: Start with 6 and double this number. 

We get 6 + 6 = 12 and three more is 15. The difference between 6 and 15 is 6 + 3 = 9
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Strategy 3: The 'take ( away' process
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Start with 15. Take away 5 to get 10, and taking away 1 more gives 9

[image: image43.png]c 15
/60/5/ Thoe is na%,)'/ﬁ
- “ ‘C)‘f? m s
6 next colymn, 50
Tl btvrow ﬂ/ow
the 6.



On the number line:


Benefits of relational understanding
Van de Walle comments (2004): 

To teach for relational understanding requires a lot of work and effort. The network of concepts and connections develop over time and not in a day.
Reflect again on the involvement of the learner in the science of pattern and order when ‘doing’ mathematics. Perhaps he or she had to share ideas with others, whether right or wrong, and try to defend them. He had to listen to his peers and try to make sense of their ideas. Together they tried to come up with a solution and had to decide if the answer was correct without looking in an answer book or even asking the teacher. 
When learners do mathematics like this on a daily basis in an environment that encourages risk and participation, formulating a network of connected ideas (through reflecting, investigating and problem solving), it becomes an exciting endeavour, a meaningful and constructive experience.

In order to maximise relational understanding, it is important for the teacher to 
· select effective tasks and mathematics activities that lend themselves to exploration, investigation (of number patterns for example) or self-discovery;
· make instrumental material available (in the form of manipulatives, worksheets, mathematical games and puzzles, diagrams and drawings, paper-folding, cutting and pasting, and so on) so that the learners can engage with the tasks;
· organise the classroom  for constructive group work and maximum interaction with and among the learners. 
The important benefits derived from relational understanding (that is, this method of constructing knowledge through the process of 'doing' mathematics in problem-solving and thus connecting a network of ideas to give meaning to a new idea) make the whole effort not only worthwhile but also essential. 
In his book Elementary and Middle School Mathematics, Van de Walle (2004) gives a very clear account of seven benefits of relational understanding (see Chapter Three). What following is a slightly adapted version of his account. 
Benefit 1: It is intrinsically rewarding
Nearly all people, and certainly children, enjoy learning ('what type of learning?', you may ask). This is especially true when new information, new concepts and principles connect with ideas already at the learner’s disposal. The new knowledge now makes sense, it fits (into the learner’s schema) and it feels good. The learner experiences an inward satisfaction and derives an inward motivation to continue, to search and explore further - he or she finds it intrinsically rewarding.

Children who learn by rote (memorisation of facts and rules without understanding) must be motivated by external means: for the sake of a test, to please a parent, from fear of failure, or to receive some reward. Such learning may not result in sincere inward motivation and stimulation. It will neither encourage the learner nor create a love for the subject when the rewards are removed.

Benefit 2: It enhances memory 
Memory is a process of recalling or remembering or retrieving of information.

When mathematics is learned relationally (with understanding) the connected information, or the network of connected ideas is simply more likely to be retained over time than disconnected information.

Retrieval of information is also much easier. Connected information provides an entire web of ideas (or network of ideas). If what you need to recall seems distant, reflecting on ideas that are related can usually lead you to the desired idea eventually.

Retrieving disconnected information or disorganised information is more like finding a needle in haystack.

Look at the example given below. Would it be easier to recall the set of disconnected numbers indicated in column A, or the more organized list of numbers in column B?  Does the identification of the number pattern in column B (that is, finding the rule that connects in the numbers) make it easier to retrieve this list of numbers?


Benefit 3: There is less to remember 
Traditional approaches have tended to fragment mathematics into seemingly endless lists of isolated skills, concepts, rules and symbols. The lists are so lengthy that teachers and learners become overwhelmed from remembering or retrieving hosts of isolated and disconnected information.

Constructivists, for their part, talk about how ‘big ideas’ are developed from constructing large networks of interrelated concepts. Ideas are learned relationally when they are integrated into a web of information, a ‘big idea’. For a network of ideas that is well constructed, whole chunks of information are stored and retrieved as a single entity or as a single ground of related concepts rather than isolated bits.

Think of the big idea ‘ratio and proportion’ and how it connects and integrates various aspects of the mathematics curriculum: the length of an object and its shadow, scale drawings, trigonometric ratios, similar triangles with proportional sides, the ratio between the area of a circle and its radius and so on. Another example - knowledge of place value - underlies the rules involving decimal numbers:

	
	
EXAMPLE

	· Lining up decimal numbers


	
53,25


  0,37


+8,01


……..

	· Ordering decimal numbers


(in descending order)
	8,45   ;   8,04   ;   8,006

	· Decimal-percent conversions 
	0,85 =
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85

 = 85%

	· Rounding and estimating


	Round off 84,425 to two decimal places

Answer: 84,43

	· Converting to decimal
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	· Converting to fractions 


	0,75 kg = 
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and so on.
Benefit 4: It helps with learning new concepts and procedures
An idea which is fully understood in mathematics is more easily extended to learn a new idea:

· Number concepts and relationships help in the mastery of basic facts:

For example: 

	8 + 7 =15

15 ( 8 = 7

15 ( 7 = 8
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· Fraction knowledge and place-value knowledge come together to make decimal learning easier.

For example:
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· Proper construction of decimal concepts will directly enhance an understanding of percentage concepts and procedures.
For example: 

Convert 0,125 to a percentage.
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· Many of the ideas of elementary arithmetic become the model for ideas in algebra.

For example: 
3 ( 5 + 4 ( 5 = 7 ( 5


3 ( 7 + 4 ( 7 = 7 ( 7


3 ( 12 + 4 ( 12 = 7 ( 12

Leads to:


3x + 4x = 7x
Take careful note of how connections are made and new constructs or ideas are generated. Without these connections, learners will need to learn each new piece of information they encounter as a separate unrelated idea. 

Benefit 5: It improves problem-solving abilities
The solution of novel problems (or the solution of problems that are not the familiar routine type) requires transferring ideas learned in one context to new situations. When concepts, skills or principles are constructed in a rich and organised network (of ideas), transferability to a new situation is greatly enhanced and, thus, so is problem solving.

Consider the following example:

Learners in the Intermediate phase are asked to work out the following sum in different ways:

14 + 14 + 14 + 14 + 14 + 14 + 14 + 6 + 6 + 6 + 6 + 6 + 6 + 6

Learners with a rich network of connected ideas with regard to the addition of whole numbers, multiplication as repeated addition and the identification of number patterns might well construct the following solutions to this problem:


7 ( (14 + 6)
= 7 ( 20   (since there are seven pairs of the sum 14 + 6)




= 140

or


7 ( 14 + 7 ( 6  (seven groups of 14 and seven groups of 6)


= 98 + 42


= 140 

Adding the numbers from left to right would be, you must agree, a tedious exercise.

Benefit 6: It is self-generative
A learner who has constructed a network of related or connected ideas will be able to move much easier from this initial mental state to a new idea, a new construct or a new invention. This learner will be able to create a series of mental pathways, based on the cognitive map of understanding (a rich web of connected ideas) at his or her disposal, to a new idea or solution. That is, the learner finds a path to a new goal state. Van de Walle (2004) agrees with Hiebert and Carpenter that a rich base of understanding can generate new understandings:

Inventions that operate on understanding can generate new understanding, suggesting a kind of snowball effect. As networks grow and become more structured, they increase the potential for invention.

Consider as an example, the sum of the first ten natural numbers: 

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

A learner with insight and understanding of numbers may well realize that each consecutive number from left to right increases by one and each consecutive number from right to left decreases by one. 


Hence the following five groups of eleven are formed:

1 + 10 = 11; 2 + 9 =11; 3 + 8 =11; 4 + 7 =11 and 5 + 6 =11


The sum of the first ten natural numbers is simply: 
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The connection of ideas in the above construct may well generate an understanding of the following new rule: 

1 + 2+ 3 + 4+...........+  n = 
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Use this rule to add up the first 100 natural numbers.

Relational understanding therefore has the welcome potential to motivate the learner to new insights and ideas, and the creation of new inventions and discoveries in mathematics.

When gaining knowledge is found to be pleasurable, people who have had that experience of pleasure are more likely to seek or invent new ideas on their own, especially when confronting problem based situations (Van de Walle: 2004).

Benefit 7: It improves attitudes and beliefs
Van de Walle (2004) believes that relational understanding has the potential inspire a positive feeling, emotion or desire (affective effect) in the learner of mathematics, as well as promoting his or her faculty of knowing, reasoning and perceiving (cognitive effect). When learning relationally, the learner tends to develop a positive self-concept, self-worth and confidence with regard to his or her ability to learn and understand mathematics.

Relational understanding is the product of a learning process where learners are engaged in a series of carefully designed tasks which are solved in a social environment.

Learners make discoveries for themselves, share experiences with others, engage in helpful debates about methods and solutions, invent new methods, articulate their thoughts, borrow ideas from their peers and solve problems ( in so doing, conceptual knowledge is constructed and internalised by the learner improving the quality and quantity of the network of connected and related ideas. 

The effects may be summarized as follows:

· promotes self-reliance and self-esteem

· promotes confidence to tackle new problems

· reduces anxiety and pressure 

· develops an honest understanding of concepts

· learners do not rely on interpretive learning but on the construction of knowledge

· learners develop investigative and problem solving strategies

· learners do not forget knowledge they have constructed 

· learners enjoy mathematics.
Van de Walle (2004) states that there is no reason to fear or to be in awe of knowledge learned relationally. Mathematics now makes sense - it is not some mysterious world that only ‘smart people’ dare enter. 
At the other end of the continuum, instrumental understanding has the potential of producing mathematics anxiety, or fear and avoidance behaviour towards mathematics.

Relational understanding also promotes a positive view about mathematics itself. Sensing the connectedness and logic of mathematics, learners are more likely to be attracted to it or to describe it in positive terms.

In concluding this section on relational understanding let us remind ourselves that the principles of OBE make it clear that learning with understanding is both essential and possible. That is, all learners can and must learn mathematics with understanding. Learning with understanding is the only way to ensure that learners will be able to cope with the many unknown problems that would confront them in the future.

Benefits of relational understanding

Examine the seven benefits of relational understanding given above.

1. Describe the difference between relational and instrumental understanding.

2. Select the benefits of relational thinking that you consider are most important for the learning (with understanding) of mathematics. 

3. Describe each of the benefits you have selected above and then explain why you personally believe they are significant.


2.3
 Types of mathematical knowledge
All knowledge, whether mathematical or other knowledge, consists of internal or mental representations of ideas that the mind has constructed. The concept itself, then, exists in the mind as an abstraction. To illustrate this point Farrell and Farmer (1980) refer to the formation of the concept of a 'triangle' as follows:

When you learned the concept of 'triangle' you may have been shown all kinds of triangular shapes like cardboard cut-outs, three pipe cleaners tied together, or pictures of triangular structures on bridges or pictures of triangle in general.  Eventually, you learned that these objects and drawings were representations or physical models of a triangle, not the triangle itself. In fact, you probably learned the concept of triangle before you were taught to give a definition and you may have even learned quite a bit about the concept before anyone told you its name. So a concept is not its label, nor is it any physical model or single example. The concept of the triangle, therefore, resides in the mental representation of the idea that the mind has constructed.  You may also include terms such as integer, pi ((), locus, congruence, set addition, equality and inequality as some of the mental representations of ideas that the mind has constructed in mathematics. 
According to Njisane (1992) in Mathematics Education, Piaget distinguishes three types of knowledge, namely, social, physical and logico-mathematical knowledge:

· Social knowledge is dependent on the particular culture. In one culture it is accepted to eat with one's fingers, in another it may be considered as bad manners. Social knowledge is acquired through interaction with other people. Presumably the best way to teach it in the classroom would be through telling.

· Physical knowledge is gained when one abstracts information about the objects themselves. The colour of an object, its shape, what happens to it when it is knocked against a wall and so on are examples of physical knowledge. 
· Logico-mathematical knowledge is made up of relationships between objects, which are not inherent in the objects themselves but are introduced through mental activity. 

For example, to acquire a concept of the number 3, a learner needs to experience different situations where three objects or elements are encountered. Logico- mathematical knowledge is acquired through reflective abstraction, depending on the child’s mind and the way he or she organizes and interprets reality. It seems that each one of us arrives at our own logico-mathematical knowledge.

It is important to note that the acquisition of logico-mathematical knowledge without using social and physical knowledge as a foundation is bound to be ineffective. Since relational understanding depends on the integration of ideas into abstract networks of ideas (or a network of interconnected ideas), teachers of mathematics may just view mathematics as something that exists 'out there', while forgetting the concrete roots of mathematical ideas. This could result in a serious mistake - teachers must take into account how these mental representations of the mind are constructed. That is, through effective interaction and 'doing mathematics'.
STOP AND THINK!

Having read about the different types of mathematical knowledge in the preceding paragraphs, do you think that logico-mathematical knowledge can be transmitted from a teacher to a learner while the learner plays a passive role?  Discuss your answer with your study partner.

Conceptual understanding of mathematics
Van de Walle (2004) explains that conceptual knowledge of mathematics consists of logical relationships constructed internally and existing in the mind as a part of the network of ideas:

· It is the type of knowledge Piaget referred to as logico-mathematical knowledge. That is, knowledge made up of relationships between objects, which are not inherent in the objects themselves, but are introduced through mental activity.

· By its very nature, conceptual knowledge is knowledge that is understood.

You have formed many mathematical concepts. Ideas such as seven, nine, rectangle, one/tens/hundreds (as in place value), sum, difference, quotient, product, equivalent, ratio positive, negative are all examples of mathematical relationships or concepts. 

It would be appropriate at this stage to focus on the nature of mathematical concepts. Richard R Skemp (1964) emphasises the following (which should draw your attention): 

Mathematics is not a collection of facts, which can be demonstrated, seen or verified in the physical world (or external world), but a structure of closely related concepts, arrived at by a process of pure thought.

Think about this: that the subject matter of mathematics (or the concepts and relationships) is not to be found in the external world (outside the mind), and is not accessible to our vision, hearing and other sense organs. These mathematical concepts have only mental existence - so in order to construct a mathematical concept or relationship, one has to turn it away from the physical world of sensory objects to an inner world of purely mental objects.

This ability of the mind to turn inwards on itself, that is, to reflect, is something that most of us use so naturally that we may fail to realize what a remarkable ability it is. Do you not consider it odd that we can 'hear' over own verbal thoughts and 'see' over own mental images, although no one has revealed any internal sense organs which could explain these activities?  Skemp (1964) refers to this ability of the mind as reflective intelligence. 

Are mathematical concepts different from scientific concepts?  Farrell and Farmer (1980) explains that unlike other kinds of concepts such as cow, dog, glass, ant, water, flower, and the like, you cannot see or subject to the other senses examples of triangle, points, pi, congruence, ratio, negative numbers and so on. ‘But we write numbers, don't we?’ you may ask. No, we write symbols which some prefer to call numerals, the names for numbers. Now reflect on the following key difference between mathematics and science:

Scientific concepts include all those examples which can be perceived by the senses, such as insect and flower, and those whose examples cannot be perceived by the senses, such as atom and gravity. These latter concepts are taught by using physical models or representations of the concepts (as in the case of mathematics). (Farrell & Farmer: 1980).

Skemp (1964) urges us to see that the data of sensori-motor learning are sense data present in the external world - however, the data for reflective intelligence are concepts, so these must have been formed in the learner’s own mind before he or she could reflect on them. A basic question that you may ask at this stage is: How are mathematical concepts formed? 

Skemp (1964) points out that to give someone a concept in a field of experiences which is quite new to him or her, we must do two things:

Arrange for him or her a group of experiences which have the concept as common and if it is a secondary concept (that is a concept derived from the primary concepts), we also have to make sure that he or she has the other concepts from which it is derived (that is the prerequisite concepts need to be in place in the mental schema of the learner).

Returning now to mathematics: ‘seven’ is a primary concept, representing that which all collection of seven objects has in common. ‘Addition’ is another concept, derived from all actions or processes which make two collections into one. These concepts require for their learning a variety of direct sensory experiences (counters, manipulative and so on) from the external world to exemplify them.

The weakness of our present teaching methods comes, according to Skemp (1964), during and after the transition from primary to secondary concepts, and other concepts in the hierarchy. For example, from working through the properties of individual numbers to generalization about these properties; from statements like     9 ( 6 = 54 to those like 9(x + y) = 9x + 9y.

STOP AND THINK!
Would you agree that many learners never do understand what these algebraic statements really mean, although they may, by rote-learning, acquire some skills in performing as required certain tricks with the symbols?  
According to Skemp, understanding these statements requires the formation or construction of the appropriate mathematical concepts.


STOP AND THINK!

Do you think there are any limitations in the understanding of mathematical concepts learnt through the use of physical objects and concrete manipulative from the external world? 
Skemp (1964) agrees fully with Dr Dienes in that to enable a learner to form a new concept, we must give him (or her) a number of different examples from which to form the concept in his or her own mind - for this purpose some clever and attractive concrete embodiments (or representations) of algebraic concepts in the form of balances, peg-boards, coloured shapes and frames and the like are available.
However, these concrete embodiments fail to take into account the essential difference between primary and higher order concepts - that is, only primary concepts can be exemplified in physical or concrete objects, and higher order concepts can only be symbolised.

To explain this, think of the concept 3 + 4 = 7, which can be demonstrated physically with three blocks and four blocks or with beads or coins, But 

3x + 4x = 7x
is a statement that generalises what is common to all statement such as 

3 ( 5 + 4 ( 5 = 7 ( 5 

3 ( 8 + 4 ( 8 = 7 ( 8 etc

and which ignores particular results such as:

3 ( 5 + 4 ( 5 = 35.

Do you agree, therefore, that understanding of the algebraic statement is derived from a discovery of what is common to all arithmetical statements of this kind, not of what is common to any act or actions with physical objects?

As new concepts and relationships are being assimilated in the network of connected ideas, the direction of progress is never away from the primary concepts. This progress results in the dependence of secondary concepts upon primary concepts. Once concepts are sufficiently well formed and independent of their origins, they become the generators of the next higher set - and in so doing lead to the construction of a hierarchy of concepts.

Van de Walle (2004: 26) cautions us that the use of physical (or concrete) objects in teaching may compromise meaningful understanding of concepts. This happens if there are insufficient opportunities for the learner to generalise the concept: 
Here, three blocks are commonly used to represent ones, tens and hundreds. Learners who have seen pictures of these or have used actual blocks may labour under the misconception that the rod is the 'ten' piece and the large square block is the 'hundreds' piece. Does this mean that they have constructed the concepts of ten and hundred? All that is known for sure is that they have learned the names for these objects, the conventional names of the blocks. The mathematical concept of ten is that a ten is the same as ten ones. Ten is not a rod. 
The concept is the relationship between the rod and the small cube - the concept is not the rod or a bundle of ten sticks or any other model of a ten. This relationship called 'ten' must be created by learners in their own minds.

Van de Walle (2004) goes on to present another interesting example that distinguishes the concept from the physical object. 
Reflect carefully on the three shapes (A, B and C) which can be used to represent different relationships.

If we call shape B 'one' or a whole, then we might refer to shape A as 'one-half '. The idea of 'half' is the relationship between shapes A and B, a relationship that must be constructed in our mind it is not in the rectangle. 

If we decide to call shape C the whole, shape A now becomes 'one-fourth'. The physical model of the rectangle did not change in any way. You will agree that the concepts of 'half' and 'fourth' are not in rectangle A - we construct them in our mind. The rectangles help us to 'see' the relationship, but what we see are rectangles, not concepts. Assigning different rectangles the status of the ‘whole’ can lead to generalisation of the concept.


For this activity you are required to reflect on conceptual knowledge in mathematics.

1) Richard R Skemp states that 'mathematics is not a collection of facts which can be demonstrated and verified in the physical world, but a structure of closely related concepts, arrived at by a process of pure thought'.

a) Discuss the above statement critically with fellow teachers of mathematics. Take into account how concepts and logical relationships are constructed internally and exist in the mind as part of a network of ideas.

b) In the light of the above statement explain what Skemp means when he refers to 'reflective intelligence' (the ability of the mind to turn inwards on itself).

c) Why are 'scientific concepts' different from 'mathematical concepts'?  Explain this difference clearly using appropriate examples.

2) Skemp points out that to help a learner construct a concept in a field of experience which is quite new to him or her, we must do two things. Mention the two activities that the teacher needs to follow to help the learner acquire 'primary concepts', 'secondary concepts', and other concepts in the hierarchy of concepts. 

3) Richard R Skemp distinguishes between 'primary concepts' and 'secondary concepts' in the learning of mathematics. Reflect on the difference between concepts which are on different levels. Name some secondary concepts that learners at the Senior Phase may encounter.

Analyse the three shapes (A, B and C) shown in the text on the previous page.. Explain why the concepts ‘half’ and ‘quarter’ are not in physically in rectangle A - but in the mind of the learner. Explain the implications of this for teaching using manipulatives (concrete apparatus).


Procedural knowledge of mathematics
Procedural knowledge of mathematics, according to Van de Walle (2004) is:

knowledge of the rules and procedures that one uses in carrying out routine mathematical tasks includes also the symbolism that is used to represent mathematics.

You could, therefore, infer that knowledge of mathematics consists of more than concepts. Step-by -step procedures exist for performing tasks such as:

56 ( 74 
(Multiplying two digit numbers)

1 932 ( 28
(Long division)
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(Adding fractions)

0,85 ( 0,25
(Multiplying decimal numbers)

and so on.

Concepts are represented by special words and mathematical symbols (such as ( , =,  < , >, //, ≡, (ABC = 45( and so on). These procedures and symbols can be connected to or supported by concepts ( but very few cognitive relationships are needed to have knowledge of a procedure (since these could be diligently memorized through drill and practice).

What are procedures? These are the step-by-step routines learned to accomplish some task - like a computation in the classroom situation.

STOP AND THINK!

Reflect on the following example of a procedure:

To add two three-digit numbers, first add the numbers in the right-hand column. If the answer is 10 or more, put the 1 above the second column, and write the other digit under the first column. Proceed in a similar manner for the second two columns in order.

We can say that someone who can work through the variations of the procedures in activity 10 has knowledge of those procedures. The conceptual understanding that may or may not support the procedural knowledge can vary considerably form one learner to the next. 
In mathematics, we often use the term ‘algorithm’ to refer to a procedure. An algorithm, according to Njisane (Moodly: 1992), is 
a procedure which consists of a finite number of steps that lead to a result. 
A simple example of an algorithm is the set of steps used to perform the addition of fractions,  eg 
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The use of algorithms is often helpful, but, to be helpful, algorithms must be understood. Njisane (Moodly: 1992) comments that an algorithm which is properly understood may free the mind for further thinking whereas using an algorithm without insight may be frustrating. This is the difference between the 'how' and 'why' or between procedural and relational understanding (that is, forming a network of connected ideas). If the procedure refers to what we do when following a set of steps, then relational understanding refers to why we do whatever we do.

In mathematics, we use a number of different symbols which indicate procedures that need to be followed. For example, if we write (8 + 7) ( 3 + 10 = 15, it means a different procedure has to be followed than if we placed the brackets around (3 + 10). However, the meaning we attach to symbolic knowledge depends on how it is understood – what concepts and other ideas we connect to the symbols. Van de Walle (2004) states that symbolism is part of procedural knowledge whether you understand it or not.
Procedural knowledge and doing mathematics

As you read further it will be important for you to understand why the connections between procedural knowledge and the underlying conceptual knowledge and relationships are vital for the construction of relational understanding in mathematics. You will also see that the ability to make connections plays a very important role both in learning and in 'doing' mathematics. 
Van de Walle (2004) explains that:

· Algorithmic procedures help us to do routine tasks easily and, thus, free our minds to concentrate on more important tasks (like thinking out problem-solving strategies for example).

· Symbolism (which is part of procedural knowledge) is a powerful mechanism for conveying mathematical ideas to others and for manipulating an idea as we do mathematics.

However, Van de Walle (2004) emphasizes that
even the most skilful use of a procedure will not help develop conceptual knowledge that is related to that procedure
For example, think of the endless long-division and long-multiplications exercises in the classroom. Will these algorithmic exercises help the learner understand what division and multiplication mean? Carrying out the step-by-step computation does not necessarily translate into understanding the underlying concepts and relationships. In fact, learners who are skilful with a particular procedure are very reluctant to attach meaning to it after the fact (van de Walle: 2004).

Why the focus on concept and relationships?  Recall what Grossman (1986) states: 
Learning and thinking should not be separated from each other.

If the focus of learning is on the acquisition of specific skills, facts, procedures and the memorisation of information and rules, then thinking is suppressed. The learner requires concepts and information in order to think and he or she will think according to the knowledge already at his or her disposal. As mentioned before, you should reflect on how the weight of facts, rules and procedures robs the learner of the potential excitement of relating concepts to one another and the possibility of divergent and creative thinking. It also instils in the learner the habit of separating thinking and learning, and it often leaves learners with feelings of low self-esteem (Grossman: 1986). Procedural knowledge with little or no attached meaning results in inflicting on the learner the manipulation of symbols according to a number of rotely memorised rules, which makes learning much harder to remember than an integrated conceptual structure – a network of connected ideas.

To construct and understand a new idea (or concept) requires active thinking about it. Recall again that mathematical ideas cannot be 'poured into' a passive learner. They must be mentally active for learning to take place – they must be seriously engaged in 'doing mathematics'. In classroom, the learners must be encouraged to:

· grapple with new ideas 

· work at fitting them into existing networks

· and to challenge their own ideas and those of others.

Simply put, constructing knowledge requires reflective thought, actively thinking about or mentally working on an idea – all this to overcome the acquisition of procedural knowledge without relational understanding.
2.4 A constructivist approach to teaching the four operations
The understanding of the four basic operations is crucial to all other areas of mathematics. A solid foundation needs to be established in basic number work especially in the earlier phases of schooling. But, in order to support constructivist teaching of mathematics, this should not be done simply by using traditional algorithms. Though the aim is for learners to calculate fluently using all four basic operations, they should learn to do this by creating or inventing their own strategies. They must be able to explain what they have done, rather than simply do it mechanically. 

Devising strategies for doing operations relates to the problem solving approach of devising a plan, carrying out the plan and then evaluating the plan which will be explored fully in Unit Three. But if taught properly the four basic operations also illustrate the constructivist theory of learning, the subject of this unit. 

For constructivist teaching of mathematics, it is critical to develop a variety of strategies, rather than simply teaching a single strategy (the traditional approach). In this section, we therefore provide a range of alternative strategies so that you can vary your teaching and assessment of the operations.

Mental mathematics should be done daily, as drill and practice plays an important role in the mastery of computational skills. But even when doing mental mathematics learners need to explain how they arrived at a solution. Posing problems on flash cards for 5 to 10 minutes each day helps learners to think about alternative problem solving strategies and encourages reasoning skills, mental speed, accuracy, interaction and communication. 

Classroom exercises on the basic operations
The following exercises for developing a number sense were developed by Tom Penlington (RUMEP: 2000). They will help learners refine their basic operation strategies and can be adapted for decimal fractions and percentages.
1. Let learners count on the back of multiples. For example start at 21 and count in 7’s, or count back from 64 in 8’s

2. Doubling and halving of whole numbers, decimals and fractions.

3. Tables: draw up tables of patterns using the doubling strategy.
4. Breaking up numbers :  3 584  =  3 000  +  500  +  80  +  4  (decomposition).
5. Add on and back in multiples.

6. Pattern recognition    (see number 3)

     32  – 5  =  27                                        27  +  5  =  32

      42  –  5 =  37                                        37  +  5  =  42          Do + and – together

      52  –  5 =  47                                        47  +  5  =  52

Do x and ÷ together

      1  x  4  =  4                                               4  ÷  4  =  1

      2  x  4  =  8                                               8  ÷  4  =  2

      4  x  4  =  16                                          16   ÷  4  =  4 

      8  x  4  =  32                                           32  ÷  4  =  8
      3  x  4  =  12                                          12   ÷  4  =  3

      6  x  4  =  24                                           24  ÷  4  =  6

      9  x  4  =  36                                           36  ÷  4  =  9
7. How many 6’s in 42?

i) How many 60’s in 420?     WHY?

8. Which numbers without a remainder can be divided into 24?

9. What numbers between 70 and 700 are divisible by 7?

10. Take the number 48. Make it 100, make it 500, make it 1000

11. How much must I go back from 36 to get 3?

12. How much must I add to get from 31 to 46?

13. What minus 6 is 5?

14. What is the difference between 32 and 21?

15. What is the total of 45, 2 and 9?

16. What s the product of 9 and 12?

Strategies for addition for foundation phase learners 
1. Putting the larger number first when counting on or adding:

     3  +  12   →   12  +  3 

2. Partitioning problem:

      24  +  13   →   20  +  4  +  10  +  3

                       →   20  +  10  +  3  +  4

                          =  30  +  7  =  37

3. Bridging through 10 using familiar numbers bonds 1 to 10:
      18  +  6 =  18  +  2  +  4  =  24

4. Counting on in  10’s:

      23 + 40   As 23; 33; 43; 53; 63

5. Compensation for example adding by using  ‘+  10  –  1’:
      43  +  9  = 43  +  10  –  1  =  53  –  1  =  52

An example of a simple word problem using four different strategies:

I have  27c. I get  35c  more. How much do I have?

27  +  35  =  *                                      
1) 20  +  30   →   50  +  7   →   57  +  5   →   62

2) 20  +  30   =   50
         
 7  +  5 =  12 

    
 50  +  12  =  62

3) 27 + 3 =30 ; 35 – 3 = 32 ; 30 + 32 = 62

4)   27  +  30   →   57  +  5   →   62

Strategies for subtraction for foundation and intermediate phase learners 
1. Partitioning:

           23  –  5   =   20  –  5  +  3   =   15  +  3  =  18

2. Complementary addition or ‘shopkeepers addition’ (adding on)

      31  –  18  =

      18  +  2   →   20  +  10   →   30  +  1   →   31

3. Compensation :

      28  –  9  =  28  –  10  +  1  =  19

Strategies for multiplication for foundation and intermediate phase learners 
1. Using doubles:

I want to know what  6  x  6  is?

I want to know what  2  x  6  is?      It is  12,  so  3  x  6  =  18    doubled is  36

1  x  6  =  6

3  x  6  =  18.    This doubled is  6  x  6  =  36

2. Using repeated doubling:

13  x  4  =  4  x  13 

              2  x  13   =  26 

              2  x  13  =  26         So  26  doubled  is  52

              4  x  13  =  52         So  13  x  4  is  52           
3. Using the effect of multiplying numbers by 10 :

E.g    20  x  7  =   2  x  7  x  10  =   14  x  10   =   140
Strategies for division for foundation and intermediate phase learners 
1. Using known facts :

      Half of  46  is  23

2. Using repeated halving

      100  ÷  4  =

      Half of  100  =  50

     Halve again: half of 50 is  25

3. Using multiplication facts:

  28  ÷  7  =  4    since  4  x  7  =  28

180  ÷  3  =  60    since  18  ÷  3  =  6

4. Partitioning larger numbers: 

116  ÷  4

100  ÷  4  =  25

  16  ÷  4  =  4 

 116 ÷  4  =  29

An example : A farmer picks 338 oranges. They are packed into bags with 13 oranges in each bag. How many bags of oranges are there?

1)  338  ÷  13  =  *

       13  x  10   →   130  +  130   →   260  +  52   →   312  +  26   →   338

       10  +  10  +  4  +  2  =  26. There are 26 bags of oranges.

2)  338  ÷  13  =  26. We can do this calculation by partitioning:
     260  ÷  13  =  20                13  x  20  =  260

       78  ÷  13  =  6                    13  x  6  =  78

                            So  26  x  13  =  338

Strategies for addition for intermediate and senior phase learners 
1. Bridging through a decade uses multiples of 10 and makes use of complements (number bonds within 10 or 20) :

     67  +  35  is solved by using 3  +  7 = 10 and expressing the 5 (from the 35) as the sum of 3 and  2.
      67 + 35 → 67 + 3 = 70 then add 70 + 30 + 2

      or 67 + 35 → 35 + 5 = 40 then add 40 + 60 + 2

A more sophisticated ‘bridge’ might be :

78  +  27   →   78  +  22  =  100

100  +  5  =  105
2. Partitioning splits numbers into 10’s and 1’s using place value:
24  +  37      20  +  30  +  7  + 4

this can develop so that only the smaller number is split.

24  +  37   →   37  +  20  +  4

3. Using known facts:

75  +  30. I know 75 plus 25 is 100, so 75 plus 30 must be 105.
4. Using known fact flexibly: doubles

35  +  38   →   (2  x  35)  +  3

5. Using known facts flexibly: compensating

Round off the 38 to 40 and subtract 2

35  +  38   →   (35  +  40)  –  2 

Strategies for subtraction for intermediate and senior phase learners 

1. Counting on :

75  –  38 is solved as : 

75  – 5   →   70  –  30    →   40  –  3   →   37
-5  +   -30  +  -3  =  -38
2. Partitioning as in the addition strategy, uses place value to split numbers into 10’s and 1’s:

74  –  42 is broken into  70  –  40 and  4  - 2

Look at this example:  34  –  27  is broken into  (30  -  27)  +  4 or  (34  –  20)  -7

Even this is a good way learners use : (30  -  20)   +  (4  -  7)   =    10  +   -3   =  7
Strategies for multiplication for intermediate and senior phase learners 

1. Making use of number patterns:

35  x  100  =  3 500

35  x  300  =  35  x  3 (100)
Extend this to decimals :  4,7  x  20   →   4,7  x  2  x  10.
Another example :
3,4  x  8  =  (3,4  x  10)  –  6,8 =  34  – 6,8  =  27,2. This is a very sophisticated approach indicating a well developed number sense.
2. Extending the doubling strategy with some recording:

24  x  13  =

13   =   8  +  4  +  1    and  1  x  24  =  24

                                           2  x  24  =  48

                                           4  x  24  =  96

                                           8  x  24  =  192         so my 13 is made up of 8 which is 192, 

                                                                        4, which is 96 and 1 which is 24

Or, since    24  x  13   =   24  x  (8  +  4  –  1)   =   (24  x  8) + (24  x  4) + (24  +  1) 

we get   24 x 13  =   192  +  96  + 24  =  312
Strategies for division for intermediate and senior phase learners 

Doubling and halving may be combined:

1) 48  ÷  5   →    48  ÷  10  x  2  =    4,8  x  2   →   9,6

2) 140  ÷  4   =   (140  ÷  2)  ÷  2   =   70  ÷  2  →  35

2.5 
The role of models in developing understanding
Today we find common agreement that effective mathematics instruction in the primary grades includes liberal use of concrete materials. However, we shouldn’t simply use concrete materials uncritically in the teaching of mathematics. The aim in this section is to reflect on how to use concrete materials and models in teaching judiciously and reflectively for understanding .
Our primary question should always be:

What in principle, do I want my learners to understand?

But too often it is, 

What shall I have my learners learn to do?

TAKE NOTE!

If you can answer only the second question, then you have not given sufficient thought to what you hope to achieve by a particular set of instructions on the use of models.

Manipulatives, or concrete, physical materials to model mathematical concepts, are certainly important tools available for helping children learn mathematics, but they are not the miracle cure that some educators seem to believe them to be.

It is important that you have a good perspective on how manipulatives (concrete, physical models) can help or fail to help learners to construct ideas.
Models for mathematical concepts
Think again, for a moment, about the following statement:

There are no physical examples of mathematical concepts in the physical world (Van de Walle: 2004).

Mathematical concepts have only mental existence - that is, the subject matter of mathematics is not to be found in the external world, accessible to our vision, hearing and other sense organs. We can only ‘do’ mathematics because our minds have what Skemp (1964) refers to as 'reflective intelligence': the ability of the mind to turn away from the physical world and turn towards itself.

STOP AND THINK!

You may talk of 100 people, 100 rand or 100 acts of kindness. Reflect on the above statement and then explain what is meant by the concept of 100. Discuss this concept of 100 with fellow colleagues. If you do not agree, establish why there is a difference of opinion in you understanding.

Seeing mathematical ideas in materials can be challenging. The material may be physical (or visual) but the idea that learners are intended to see is not in the material. The idea, according to Thompson (1994: Arithmetic Teacher) is in the way the learner understands the material and understands his or her actions with it. Let’s follow this idea through by considering the use of models in the teaching of fractions. 

A common approach to teaching fractions is to have learners consider collections of objects, some of which are distinct from the rest as depicted in the following figure:


The above collection is certainly concrete (or visual). But what does it mean to the learners?

Three circles out of five? If so, they see a part and a whole, but not a fraction.

Three-fifths of one? Perhaps. Depending on how they think of the circle and collections, they could also see three-fifths of five, five-thirds of one, or five-thirds of three.
	Multiple interpretations of models

Thompson (1994) provides the following example of multiple interpretation of materials (or models) of the figure you see below.
Various ways to think about the circles and collections in the figure:





Now think about the following:

Is it important for learners to construct multiple interpretations of materials (or physical models)? Discuss the implications of multiple interpretations with fellow colleagues in mathematics teaching.


A teacher of mathematics needs to be aware of multiple interpretations of models so as to hear the different hints that learners actually come up with. Without this awareness it is easy to presume that learners see what we intend them to see, and communication between teacher and learner can break down when learners see something different from what we presume.
Good models (or concrete materials) can be an effective aid to the learners' thinking and to successful teaching. However, effectiveness is dependent on what you are trying to achieve. To make maximum use of the learners' use of models, you as the teacher must continually direct your actions, keeping in mind the question: What do I want my learners to understand?
Van de Walle (2004) reminds us that we construct the concept or relationship in our minds – so that the learner needs to separate the physical model from the relationship that is imposed on the model in order to ‘see’ the concept. Models can be effectively used in the teaching of place value to young learners.

Using models in the teaching of place value
A knowledge and understanding of our numeration system is part of a learner’s fundamental mathematical knowledge. Place value in our base ten numeration system must be fully understood by learners. Assessment Standard 4 from the NCS expands on the development of learners’ understanding of place value. The material on the next four pages comes from the RADMASTE ACE guide for their module on Number, Algebra and Pattern.
Something which we need to take in account is that, if learners are competent in using numbers up to 100 or 1 000, this does not mean that they have fully grasped the meaning of very big (for example 1 293 460 503) or very small numbers (for example 0,09856002948456 or even just 0,00000000007). Such numbers can be written very easily using our numeration system, and learners can read their face values very easily once they know the names of the ten digits we use. The ability to read face values (what you see) is not necessarily an indication of an understanding of place value (the actual size of the digits, according to their position in the numeral).
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Using Dienes’ blocks to explain grouping in tens up to 1 000.

Establishing a very firm understanding of the place values up to 1 000 lays an excellent foundation for further understanding of place value. Activities with Dienes’ blocks can be useful in this regard.

You could work with Dienes’ blocks in the following type of exercise, to demonstrate the relationship between units in different places. Complete the following:

a) 60 tinies can be exchanged for _____ longs, so 60 units = ____ tens.

b) 480 tinies can be exchanged for _____ longs, so 480 units = ____ tens.

c) 40 longs can be exchanged for _____ flats, so 40 tens = ____ hundreds.

d) 500 longs can be exchanged for _____ flats, so 500 tens = ____ hundreds.

e) 33 longs can be exchanged for _____ tinies, so 33 tens = ____ units.

f) 83 flats can be exchanged for _____ tinies, so 83 hundreds = ____ units.

g) 765 tinies can be exchanged for _____ tinies, _____ longs, and _____ flats,                             so 765 units = _____ units, ____ tens, and _____ hundreds.

h) 299 tinies can be exchanged for _____ tinies, _____ longs, and _____ flats,                              so 299 units = _____ units, ____ tens, and _____ hundreds.

STOP AND THINK!

In what way do the Dienes’ blocks clarify the ideas of face value, place value and total value? Explain your answer using an example.

Using an abacus to explain grouping in tens

An abacus is another useful apparatus in the teaching of number concept. An abacus can be used in very early counting activities. Counting in ones, twos, threes and so on, as specified in LO1 AS 1. An abacus can also be used to show the grouping in tens and movement from place to place in our base ten system. They are useful in the teaching of bigger numbers, because most abaci can be used to represent about ten different place values.

[image: image14.jpg]
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	TRY OUT THE ACTIVITIES BELOW
1) Illustrate the following numbers on the abacus, and then write out the number in expanded notation.

a) 3

b) 68

c) 502

d) 594

2) Discuss how an abacus could be used to clarify the ideas of face value, place value and total value?

3) Engage your learners in some of the examples given above. Reflect on whether they are able to separate the physical model from the concept.




Flard Cards

We can use Flard Cards to create the number 439 by using three separate cards, which could be placed one behind the other to look like this: 



400

30

9

4  3  9

Using these cards we can say that 400 is the total value of the first digit in the numeral which has a face value of 4 in the 100’s place. The cards can be lifted up and checked to see the ‘total value’ of a digit, whose face value only is visible in the full display.

You could make yourself an abacus, a set of Dienes’ blocks and a set of Flard Cards to assist you in your teaching of our numeration system.

Flard cards can be used to show learners the relative values of numbers in different places very effectively. Look at the example below:





=


+

   +

     +

From this display, where the Flard cards are laid out separately to reveal the total value of each digit in the number, learners can compare the relative values of the digits. They can say things like:

· The value of the 5 on the far left is 100 times the value of the 5 on the far right.

· The value of the middle 5 is 10 times the value of the 5 on the far right.

· The value of the 5 on the far right is 
[image: image15.wmf]1

100

 times the value of the 5 on the far left.

· The value of the 5 on the far right is 
[image: image16.wmf]1

10

 times the value of the 5 in the middle.

Your learners ultimately need to be able to answer questions relating to the understanding of the relative positioning of numerals. They need to be able to complete activities such as the one below. Learners must also read ‘right’ and ‘left’ carefully to answer these questions correctly!

	TRY THESE ACTIVITIES OUT!
1) In the number 10 212 the 2 on the left is _____________ times the 2 on the right.

2) In the number 10 212 the 1 on the left is _____________ times the 1 on the right.

3) In the number 80 777 the 7 on the far left is _____________ times the 7 immediately to the right of it.

4) In the number 80 777 the 7 on the far left is _____________ times the 7 on the far right.

5) In the number  566 the 6 on the right is _____________ times the 6 on the left.

6) In the number  202 the 2 on the right is _____________ times the 2 on the left.

7) In the number  1 011 the 1 on  the far right is _____________ times the 1 on the far left.

8) In the number 387, the face values of the digits are _____, ______ and _____; the place value of the digits (from left to right) are _________, ___________ and __________; and the total values represented by the digits (from left to right) are ____, ______ and _____.


Models and constructing mathematics

Van de Walle (2004) maintains that ‘to see’ or connect in the model the concept represented by it, you must already have the concept (that relationship) in your mind. 

If you did not, then you would have no relationship to impose on the model.

This is precisely why the view is maintained that models are often more meaningful to teachers than to the learners:

· The teacher already has the concept and can see it in the model.

· A learner without the concept only sees the physical object.

There are ways to get around this, however. For example, when learners don’t have the concept you are trying to teach, a calculator is very useful to model a wide variety of number relationships by quickly and easily demonstrating the effect of ideas.

A calculator game that can be used to develop a sense (the concept of) of place value is called ‘ZAP’. 
The rules for this game are as follows: 

1. One player calls out a number for the other players to enter onto their calculator displays (e.g. 4 789). 
2. The player then says ‘ZAP the 8’, which means that the other players must replace the 8 with the digit 0, using one operation (i.e. to change it into 4 709). 
3. The player who is the quickest to decide on how to ZAP the given digit could call out the next number. 
(In this case the correct answer would be that you have to subtract 80 from the number to ‘ZAP’ the 8.)

	Van de Walle gives the following example to illustrate the relationship of one-hundredth to a whole.

The calculator is made to count by increments. To count in intervals of 0,01, press:

0,01
+
=
=
= 
…

On a DAL calculator, press:

0,01
+
0,01
=
+
0,01
+
+
+
…

Try this out!

Can you see that the calculator 'counts' in 0,01's?
How many one-hundredths are there in one whole?




Take note of the very important question posed by Van de Walle (2004) with regard to models:

If the concept does not come from the model – and it does not – how does the model help the learner get it?

Perhaps the answer lies in the notion of an evolving idea.
New ideas are formulated or connected little by little over time. In the process, learners:

· reflect on their new ideas

· test these ideas through many different avenues

· discuss and engage in group work

· talk through the idea, listen to others

· argue for a viewpoint, describe and explain.
These are mentally active ways of testing an emerging idea against external reality. As this testing process goes on, the developing idea gets modified, elaborated and further integrated with existing ideas. Hence models can play this same role, that of a testing ground for emerging ideas.

When there is a good fit with external reality, the likelihood of a correct concept having been formed is good.
Explaining the idea of a model
Van de Walle (2004) concurs with Lesch, Post and Behr in identifying five 'representations' or models for concepts. These are:

· manipulative models

· pictures

· written symbols

· oral language

· real-world situations.
One of the things learners need to do is move between these various representations – for example, by explaining in oral language the procedures that symbols refer to, or writing down a formula that expresses a relationship between two objects in the real world. Researchers have found that those learners who cannot move between representations in this way are the same learners who have difficulty solving problems and understanding computations.

So it is very important to help learners move between and among these representations, because it will improve the growth and construction of conceptual understanding. The more ways the learner is given to think about and test out an emerging idea, the better chance it has of being formed correctly and integrated into a rich web of ideas and relational understanding.
If the task requires finding the area of a rectangle, look at the following example of translations between different model representations.

Real-world situation: Find the area of a rectangular kitchen floor, a soccer field or a hockey track and so on.

Manipulative models: Make use of a geoboard or dot paper, and so on.

Written symbols:   Area (A) = 7 ( 4  = 28 square units

General rule:  A = l ( b

Oral language: The area is the total number of square units that cover the surface of the rectangle.

Pictures: Make scale drawings of rectangles showing the units used for calculation.

Using models in the classroom
Models can be used in the following way to develop new concepts:
1. When the learner is in the process of creating the concept and uses the models to test an emerging idea.

2. When the teacher want learners  to think with models, to work actively at the test – revise – test – revise process until the new concept fits with the physical model he or she has offered (note: a teacher should only provide models on which a mathematical relationship or concept can be imposed).

3. When the teacher wants learners to connect symbols and concepts.

4. When learners already have ideas, and can make sense of written mathematics as expressions or recordings of these ideas in symbolic form. 
Models can also be used to assess learners' understanding of concepts:

· When learners use models in ways that make sense to them, classroom observation becomes possible.

· Learners can explain with manipulative materials (or drawings) the ideas they have constructed.

· They can draw pictures to show what they are thinking.
2.6 
Strategies for effective teaching
In concluding this chapter, we pose a critical question for the teacher who wants to teach for understanding: 
How can you construct lessons to promote appropriate reflective thought on the part of the learners? 
According to Van de Walle (2004), 

Purposeful mental engagement or reflective thought about the ideas we want students to develop is the single most important key to effective teaching.

Without actively thinking about the important concepts of the lesson, learning simply will not take place. How can we make it happen?

Van de Walle (2004) provides us with the following seven effective suggestions that could empower the teacher to teach developmentally:

1. Create a mathematical environment.
2. Pose worthwhile mathematical tasks.
3. Use cooperative learning groups.
4. Use models and calculators as thinking tools.
5. Encourage discourse and writing.
6. Require justification of learners' responses.
7. Listen actively.


Strategies for effective teaching

Reflect on the seven strategies given above for effective teaching of mathematics

1) Go through the list of strategies and tick off the ones you use in the classroom.

2) Write down how you consider the way in which these strategies could support a developmental approach to teaching mathematics? 

3) From the seven strategies for effective teaching pick three that you think are the most important. Write your answers down and motivate your responses in terms of how children learn.




Summary
In this unit, a distinction has been drawn between two approaches to the teaching of mathematics – rote learning versus reasoning and understanding. Similar distinctions have been made by others. For example, Garofalo and Mtetwa (1990) distinguish between two approaches that they believe actually teach two different kinds of mathematics:

· one based on instrumental understanding – using rules without understanding, and
· another based on relational understanding – knowing what to do and why.

Instrumental understanding is easier to achieve, and because less knowledge is involved, it leads to correct answers rather quickly. 
However, there are more powerful advantages to relational understanding. 

· It is more adaptable to new situations;
· Once learned, it is easier to remember, because when learners know why formulas and procedures work, they are better able to assess their applicability to new situations and make alterations when necessary and possible.

Also, when learners can see how various concepts and procedures relate to each other, they can remember parts of a connected whole, rather than separate items. Relational mathematics may be more satisfying than instrumental mathematics.

Teaching mathematics for understanding means involving the learners in activities and tasks that call on them to reason and communicate their reasoning,  rather than to reproduce memorised rules and procedures. The classroom atmosphere should be non-threatening and supportive and encourage the verbalisation and justification of thoughts, actions and conclusions. 

This study unit focuses on developing understanding in mathematics – and Van de Walle takes this forward by strongly motivating for the purposeful use and implementation of a widely accepted theory, known as constructivism. 
According to this theory, learners must be active participants in the development of their own understanding. They construct their own knowledge, giving their own meaning to things they perceive or think about. The tools that learners use to build understanding are their own existing ideas – the knowledge they already possess. All mathematical concepts and relationships are constructed internally and exist in the mind as a part of a network of ideas. These are not transmitted by the teacher. Existing ideas are connected to the new emerging idea because they give meaning to it – the learners must be mentally active to give meaning to it. Constructing knowledge requires reflective thought, actively thinking about or mentally working on an idea. Ideas are constructed, or are made meaningful when the learner integrates them into existing structures of knowledge (or cognitive schemas). As learning occurs, the networks are rearranged, added or modified. 

The general principles of constructivism are largely based on Piaget's principles of

· Assimilation (the use of existing schemas to give meaning to experiences)

· Accommodation (altering existing ways of viewing ideas that contradict or do not fit into existing schema)

The constructivist classroom is a place where all learners can be involved in: 

· sharing and socially interacting (cooperative learning)

· inventing and investigating new ideas

· challenging

· negotiating

· solving problems

· conjecturing

· generalising

· testing.
Take note that the main focus of constructivism lies in the mentally active movement from instrumental learning along a continuum of connected ideas to relational understanding. That is, from a situation of isolated and unconnected ideas to a network of interrelated ideas. The process requires reflective thought – active thinking and mentally working on an idea.

Self-assessment 

Tick the boxes to assess whether you have achieved the outcomes for this unit. If you cannot tick the boxes, you should go back and work through the relevant part in unit again.

I am able to:

	Critically reflect on the constructivist approach as an approach to learning mathematics.
	

	Cite with understanding some examples of constructed learning as opposed to rote learning.
	

	Explain with insight the term 'understanding' in terms of the measure of quality and quantity of connections.
	

	Motivate with insight the benefits of relational understanding.
	

	Distinguish and explain the difference between the two types of knowledge  in mathematics, conceptual knowledge and procedural knowledge.
	

	Critically discuss the role of models in developing understanding in mathematics (using a few examples).
	

	Motivate for the three related uses of models in a developmental approach to teaching.
	

	Describe the foundations of a developmental approach based on a constructivist view of learning.
	

	Evaluate the seven strategies for effective teaching based on the perspectives of this chapter.
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DIVISION


The ratio of 3 to 4 is the same as ¾.
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Disconnected list of numbers





Organised and connected list of numbers
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What does this collection represent?











If we see                                                    	           as one collection, then        








is one-fifth of one, so,                        	          is       three-fifths of one.
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If we see                       	                 as one collection, then            is one-third








     of one, so                                            		         is five-thirds of one.
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If we see  	       as one circle then                                	                    is five circles,





so             is one-fifth of five and                  		                is three-fifths of five.
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If we see  	         as one circle and     	                           as three circles,





so             is one-third of three and                                  		           is five- thirds





 of three.
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This is the number three thousand four hundred and seventy eight. When I read the numeral like this, I indicate an understanding of place value. I am giving the total value of the number represented using these digits.


If I read the number as ‘three four seven eight’ I am reading the face values of the digits, in order, as they appear in the numeral. I can read these face values without necessarily understanding the total value of the number.





This abacus has 10 levels. This means it can be used to represent units, tens hundreds and so on, right up to milliards (or American billions).


When you count on an abacus you start at the bottom (the units strand) with all the beads on one side. As you count, you move the beads to the other side. Once you have counted ten beads on the first strand, you push them all back, and push out one bead on the tens strand (the next strand up). This shows regrouping according to base ten. Once you have ten tens, you push them all back and push out one bead on the 3rd (hundreds) strand, and so on.
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Area = 28 square units





TRIGONOMETRY


All trig functions are ratios





SCALE


The scale of a map is 1cm per 50km





SLOPE


The ratio of the rise to the run is 1/8.





GEOMETRY


The ratio of the circumference of a circle to its diameter is always � EMBED Equation.3  ���.


� EMBED Equation.3  ��� is approximately � EMBED Equation.3  ���


Any two similar figures have corresponding measurements that are proportional (in the same ratio).





BUSINESS


Profit and loss are figured as ratios of income to total cost.





UNIT PRICES


125g/R19,95. That’s about R40 for 250g or R160 per kilogram.





COMPARISONS


The ratio of sunny days to rainy days is greater in Cape Town than in the Great Karoo.





RATIO





� EMBED Equation.3  ���





� EMBED MS_ClipArt_Gallery  ���





The activity on the following page has been designed to get you thinking about different ways in which educators try to impart concepts to their learners.
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Remember to add this activity to your journal!





As you are sure to have guessed by now, the general principles of constructivism are largely based on the work of piaget.  We know you have covered this work in Module 1, so below is a brief recap of Piaget’s views, with some interesting additional comments. 
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Remember to add this activity to your journal!
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� EMBED MS_ClipArt_Gallery  ���





Remember to add this activity to your portfolio!
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Remember to add this activity to your portfolio!
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