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Section A

Introduction (Aron)
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Purpose of Introduction

Scope of presentation
Concepts in basic theory
Themes in developing applications
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Directly Transmitted Infections That Confer Lifelong Immunity

Theoretical—simple structure
Practical—broad application to childhood immunizable
diseases
Historical—classic epidemiology
Pedagogical—generalization from one in-depth example
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Mathematical Model

A mathematical model is an explicit mathematical 
description of the simplified dynamics of a system. A 
model is therefore always “wrong,” but may be a useful 
approximation (≅ rather than =), permitting conceptual 
experiments which would otherwise be difficult or 
impossible to do.
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Mathematical Model Results

Help determine the plausibility of epidemiological 
explanations
Predict unexpected interrelationships among empirical 
observations (improve understanding)
Help predict the impact of changes in the system
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Important Concepts

Endemicity—persistence of infection in a population
Age at infection—age-dependent patterns of infection in 
a population
Mass immunization—herd immunity
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Themes in Developing Applications

Simplicity vs. complexity
Sharing concepts across disciplines



Section B

Basic Theory—Endemicity (Aron)
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Polio in Greenland (Pre-Vaccine)
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Hepatitis B in Greenland (Pre-Vaccine)
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Hepatitis B in Greenland (Pre-Vaccine)
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Kermack-McKendrick Threshold Theorem Assumptions

Population densities
−Susceptibles (X)
− Infectives (Y)
−Removals (Z) - immune or 

dead 
SIR model
Closed population (X + Y + Z = 
N)
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Kermack-McKendrick Threshold Theorem Assumptions

Population densities
−Susceptibles (X)
− Infectives (Y)
−Removals (Z) - immune or 

dead 
SIR model
Closed population (X + Y + Z = 
N)

Direct transmission and mass-
action mixing (βXY) transfers X 
to Y
Removal of infectives (γY) 
transfers Y to Z
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Kermack-McKendrick Threshold Theorem Assumptions
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Kermack-McKendrick Threshold Theorem Results

1. A single infective in an otherwise susceptible population 
will start an epidemic only if the density of susceptibles 
exceeds a threshold
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Kermack-McKendrick Threshold Theorem Results

1. A single infective in an otherwise susceptible population 
will start an epidemic only if the density of susceptibles 
exceeds a threshold

At t = 0, dY/dt = (βX - γ) Y > 0   if  X > γ
 

/ β
 

(Note: X ≅
 

N)

The rate at which susceptibles become infectives (βXY) 
must exceed the rate at which infectives are removed (γY)
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Kermack-McKendrick Threshold Theorem Results

2. At the end of the epidemic (if there is one), the population 
consists of…
i. Susceptibles below threshold density
ii. No infectives
iii. Removals
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SIR Epidemic Population Density of Infectives
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Defining the Threshold

N = 8,700 people per square 
mile
β = (.001 sq mi per day)
(.4 probability of transmission 
per contact)
γ = .5 per day (1/γ = 2 days 
mean duration of 
infectiousness)

γ / β = 1,250 people per square 
mile
− N > γ

 

/ β
− 8,700 > 1,250

1 secondary case
− βN / γ

 

> 1
− 6.96 > 1
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Kermack-McKendrick Threshold Theorem Epidemiology

Epidemics cannot begin in a very low-density population. 
If begun, they cannot be sustained (i.e., become 
endemic) without an influx of susceptibles.
Epidemics can wax and wane as a function of the supply 
of susceptibles. An old epidemic theory postulated the 
need for increases and decreases in the transmissibility of 
the agent.
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Kermack-McKendrick Threshold Theorem Epidemiology

The eradication of an infection by mass immunization can 
be understood in terms of reducing the density of 
susceptibles below a threshold. This effect is called “herd 
immunity” since the population may be protected from 
outbreaks even if there are some susceptibles in the 
population. Thus, eradication is theoretically possible with 
less than 100% immunization.



Section C

Basic Theory—Age at Infection (Aron)



26

Average Age of Infection: Measles and Whooping Cough

Average age of infection (years), Maryland, U.S.A., 1908–
1917
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Basic Reproduction Ratio R

R is the number of secondary cases generated from a 
single infective case introduced into a susceptible 
population. Infection persists (endemicity) if R > 1 and 
there is steady influx (births) of susceptibles, i.e., an open 
population.
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Basic Reproduction Ratio R

R  ≅

 

(β

 

N)                                              (1 / γ)
(Effective Contact Rate)     (Mean Duration of Infectiousness)

2 days
c  (Contact Rate)      q  (Probability of Transmission per Contact)
8.7 people per day             .4

R is the number of secondary cases generated from a 
single infective case introduced into a susceptible 
population. Infection persists (endemicity) if R > 1 and 
there is steady influx (births) of susceptibles, i.e., an open 
population.
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Basic Reproduction Ratio R

Larger R is associated with greater contact rate (greater 
population density), greater duration of infectiousness or 
probability of transmission per contact (greater 
infectiousness)
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Basic Reproduction Ratio R

Larger R is associated with greater contact rate (greater 
population density), greater duration of infectiousness or 
probability of transmission per contact (greater 
infectiousness)
At endemic equilibrium, (X / N) = (1 / R). That is, 
susceptible fraction decreases with larger R. If  L = mean 
life expectancy and A = mean age at infection, (X / N) ≅ (A 
/ L). That is, earlier infections imply fewer are susceptible 
(never infected). So R ≅ L / A.
Larger R is associated with lower average age at infection
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Average Age of Infection: Measles and Whooping Cough

Average age of infection (years), Maryland, U.S.A., 1908–
1917



32

Empirical Inverse Relationship

Infectiousness and average age



Section D

Basic Theory—Mass Immunization (Aron)
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Basic Reproduction Ratio after Immunization
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Effect of Mass Immunization

R’ ≅
 

R (1 - v)   to define threshold for eradication
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Effect of Mass Immunization

R’ ≅
 

R (1 - v)   to define threshold for eradication

Eradication if  R’ < 1; immunization level v > 1 - (1/R)
R = 2; v > 50%
R = 5; v > 80%
R = 10; v > 90%
R = 20; v > 95%

Herd 
immunity
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Effect of Mass Immunization

R’ ≅
 

R (1 - v)   to define threshold for eradication

Eradication if  R’ < 1; immunization level v > 1 - (1/R)
R = 2; v > 50%
R = 5; v > 80%
R = 10; v > 90%
R = 20; v > 95%

If  1 < R’ < R, infection persists in the population with
reduced incidence and higher mean age

Herd 
immunity
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Summary of Basic Theory



Section E

Developing Applications—Simplicity vs. Complexity (Aron)
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Maps and Mathematical Models

Maps are like models because they selectively include 
information in order to achieve a specific purpose
What is the best road map?
−

 
Scenic highways for tourism?

−
 

High clearance for large trucks?
−

 
Sized to fit on one computer screen?
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Expanded SIR Model: Age Differences in Contact Rates

Simple

No age structure
Semi-quantitative results
Direction of change
“Average age will increase”

Complex

Age differences in contact rates
Quantitative results
Magnitude of change
“Average age will rise by 2.5 
years”
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Expanded SIR Model: Measles in England and Wales

Simple

No age structure
Ai  (1 - p) =  A
If p = .50, Ai = 2 A
50% immunization doubles 
average age of infection

Complex

50% vaccine uptake from 1970 
to 1980
Average age rose from 4.5 to 
5.5 years
Higher contact at school entry
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Threshold for Eradication
% Effective Immunization

96%

89%

76%

Explanation of Differences
Adult Contact Rates

High Contact

Intermediate Contact

Low Contact

Expanded SIR Model: Measles in England and Wales
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Expanded SIR Model: Latent Period

Simple

No latent period
Equilibrium reservoir of 
infection
Effective immunization 
thresholds

Complex

Latent period 
SEIR where E is exposed but 
latent
Speed of epidemiological 
response to immunization level
Speed of epidemic
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Expanded SIR Model: Latent Period

No latent period

Generation time from case to 
case is duration of 
infectiousness

Latent period

Generation time from case to 
case is duration of latency plus 
infectiousness
Measles generation time 
approximately 14 days
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Expanded SIR Model: Stochastic Effects

Simple

Deterministic
Fixed rules for change
Circulation of many infectives
Pre-immunization
Moderate levels of 
immunization

Complex

Stochastic
Chance events
Circulation of few infectives
High levels of immunization
Clusters of cases
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Expanded SIR Model Stochastic and Heterogeneous

The initial location of the “seed” in a network of 
susceptible hosts may strongly affect the total number of 
cases
A given historical experience of an epidemic is only one 
possible realization of a contagion process. The outcome 
could have been different.



Section F

Developing Applications—Sharing Concepts Across 
Disciplines (Aron)
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Analogy Between Lasers and Epidemics

SIR model

Lasers Epidemics

Intensity of light Infective population
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Analogy Between Lasers and Epidemics

The idea for the laser came during discussions of 
population models in the 1950s. (Townes received the 
Nobel Prize for Physics in 1964.)
This analogy is the basis for using laser experiments to 
analyze the behavior of epidemics
−

 
Kim, Roy, Aron, Carr, and Schwartz (2005)
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Health and Environment: Linking Global Change to Health

Linking models of earth science dynamics with models of 
the spread of disease
Sustainable development as a theme in public health 
(World Health Organization/Pan American Health 
Organization)
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Climate and Health in the Caribbean: WHO Book

http://chiex.net/publications_2003.htm
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Administrators   — 1 in 
100,000

Engineers          — 1 in          
35

Perception of Risk: Linking Science to Decisions

“Very few surprises are surprises to everyone”
Prior to explosion of U.S. space shuttle Challenger, NASA 
had two assessments of failure of solid rocket boosters
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Perception of Risk: Linking Science to Decisions

Was there undue pressure to nail the [International Space 
Station] Node 2 launch date to the February 19, 2004, 
signpost?  The management and workforce of the shuttle 
and space station programs each answered the question 
differently.
NASA MANAGEMENT: There was definitely no undue 
pressure
NASA WORKFORCE: There was considerable 
management focus on Node 2 and resulting pressure to 
hold firm to that launch date, and individuals were 
becoming concerned that safety might be compromised

— Report of the Columbia Accident Investigation Board, 
August 2003
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Comments on Models

“Although the model suppresses a great deal 
of detail, it is complicated enough to make 
understanding difficult. When you discover 
some new aspect of its behavior, it can be 
difficult to track down the mechanism 
responsible. Thus, adding more structure in 
the cause of realism would not necessarily 
teach us much. We might well reach a point 
where we could not understand the model any 
better than we understand the real world.”
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Comments on Models

“Realistic modeling of spatial and temporal 
phenomena generally demands 
disaggregation (i.e., large detailed models 
and/or databases)—but in terms of decision 
making, such levels of disaggregation are 
usually counterproductive. Decision making 
demands aggregation, and therein lays the 
dilemma. From a scientific viewpoint, we must 
disaggregate ‘to be real’—from a decision- 
making viewpoint, we must aggregate ‘to be 
real’.”
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