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1 Course Content Elements  

1.1 Course Title / Course Code  

Course Title: Calculus of several variables  

Course Code: MT200 

 

1.2 Instructor(s) Introduction 

The course will be delivered by Irunde, Jacob Ismail who is assistant 
lecturers at mathematics department, Mkwawa University College of 
Education.  

 

Contacts: 

Irunde, Jacob Ismail, 

Room No. 6B, 

Phone: extension 226, 

Email: jacobirunde@yahoo.com. 

  
 

 

1.3 Course Overview 

 

MT200 is a course designed for second year students. The course comprises of function of 
several variables, which includes Jacobian matrix and determinant, applications in analysis, 
curves and regions, scalar and vector fields, orthogonal curvilinear coordinates, the definite 
Riemann integral in 3n (n=2,3), vector integral calculus and integral theorems 

 

1.4 Course Outcomes/Objectives 

 
Generally at the end of the course you will be able to develop necessary 

concepts and techniques of differential integral calculus of several variables. 

 
 

At the end of the course specifically, you will be able to: 

· Define domain, limit, continuity, partial derivatives, and differentiability of functions of several 
variables. 
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· To determine domain, limits, partial derivatives, continuity and differentiability of functions of 
several variables. 

· To calculate Jacobian matrix and determinant. 

· To apply Lagrange multipliers to analyze extreme points. 

· To represent space curves and regions in parametric form, and determine whether they are 
tangent /normal to the curve/surface. 

· To find directional derivatives, gradient, del operator, divergence, laplacian and the curl of a 
vector field. 

 

 

 

1.5 Pre-requisites 

 

You will need the following prerequisite courses: 

 MT120: Analysis1: Functions of single variable. 
 MT127: Linear Algebra1. 
 MT136: Ordinary differential equations I. 

.  

 

 

1.6 Course Calendar/Schedule 

WEEK LESSON ACTIVITIES FACILITATOR 

  Familiarization to the course Registration  
Self Introduction 

 

1 Module 1 Functions of several variables 

L/Unit1: Domain, Limits and Continuity 

 

Activity 1.1  
J.I. Irunde 
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2 Module 1: Functions of several 
variables 

L/Unit2: Partial derivatives and 
differentiability. 

L/Unit3: Composite functions and Chain 
rule. 

Module 1: 

L/Unit3: Composite functions and Chain 
rule. 

Activity: 1.2:  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Module 2: Jacobian Matrix and 
determinant 

L/Unit4: Implicit functions and 
simultaneous implicit theorem. 

L/Unit5:Higher order derivative and 
Taylor's series 

 

 

Activity: 2.1: 
 

 

3   Module3: Application in Analysis 

L/Unit6: Extrema, extrema with  

Constraints 

Activity: 3.1 
 
 

 
 

Module4: Curves and Region. 

L/Unit7&8: Space curve, parametric  

representation, piecewise 

smooth curves. 

 

Activity: 4.1  

4 Module4: Curves and Region. 

L/Unit9: Orientation, length of the curve 
and regions. 

L\unit10: Simply-connected and 

multiply connected regions. 

Activity: 4.2: 
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. 

. 

 

5 Module4: 

L/Unit12: Tangent and normal to 

curve, tangent plane and  

normal to surface. 

Module5: Scalar and vector fields. 

L/Unit13: Partial differentiation of vector 
function, directional 

derivative and gradient. 

L\Unit14: Del operator and its properties 
divModule5: 

L/Unit15: The curl, the physical 

interpretation and properties of 
divergence, laplacian and the curl.. 

 

 

Activity: 5.1: 
 

 
 

6 Module6: Orthogonal curvilinear  

Coordinates. 

L/Unit16: Transformation of  

coordinates, orthogonal 

curvilinear coordinates in  

space. 

L/Unit17: Unitary and Unit vectors in 
curvilinear systems- in particular 
rectangular. 

 

Test1  
 

7 Module 6: Orthogonal curvilinear Activity: 6.1  
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coordinates. 

L/Unit18: Cylindrical and spherical 
systems, Transformation of vectors 
between coordinate systems. 

L/Unit 12: Simple OHP maintenance 

  
 

8 8 

Module 6: Orthogonal curvilinear 
coordinates 

L/Unit19: The gradient, divergence, curl 
and laplacian in orthogonal curvilinear 
coordinates 

L/Unit20: Arc length, element of arc 
length and volume element in general 
curvilinear coordinates (The metric form 
or fundamental quadratic form)  

 

Activity: 6.2: 
 

 
 

9-10 Module7: The Definite Riemann 
integrals 3n (n=2, 3). 

L/Unit21: Double and triple Riemann 
integral. 

L/Unit22: The iterated integrals, change 
of variables in integrals. 

L/Unit23: Arc length, volume and 
surface area. 

 

Activity: 7.1: 
 

 
 

11-12 Module8. Vector integral calculus. 

L/Unit24: Line integral in the plane, 
integral with respect to arc length. 

L/Unit25: Line integral, integral of 
vectors and Green theorem. 

L/Unit26: Independence of path, line 
integral in space and surface in space. 

 

Activity: 8.1&Test2 
 

 

12-15 Module8. Vector integral calculus 
 

Activity 8.2&9.1&9.2 
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1.7 Course assessment and Grading Policy 

WEEK NO ASSESSMENT MARKS 
(%) 

REMARKS 

6 Test1 20 Assessment based on content 
covered in weeks 1-5  

12 Test2 20 Assessment based on content 
covered in week 6 -11 

16-17 Examination 60  

 Total 100  

 

1.8 References/resources. 

2 References 

 

 

1. W. Kaplan: Advanced calculus Addis-Wesley. Co, New York 1991 

2. Apostol T. Calculus Volume II, Volume II; John Wiley & Sons, 1969. 

3.Bourne, D E& Kendall P C: Vector Analysis and Cartesian Tensors, Chapman and 

Hall, London, 1992. 

4. Leithold, L: The Calculus with Analytic Geometry, Herper Collins Publisher,1990. 

5. Spiegel M R. : Advanced Calculus, Schaum Series, Mc Graw Hill Book Co., New 

York, 1962. 

  

L\Unit27: Orientability, surface integral, 
and volume integral. 

Module9: Integral Theorems. 

L/Unit28: The Gauss and Stoke 
theorems. 

L/Unit29: Change of variables in 
multiple integrals and physical 
applications in dynamics, 
electromagnetism (etc):  

 

16-17 FINAL EXAMINATIONS THAT WILL BE CONDUCTED AT UDSM 
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2.1 Course notes/content 

 

Modules:  

 function of several variables, the Jacobian matrix and determinant, 
applications in analysis, curves and regions, scalar and vector fields, 
orthogonal curvilinear coordinates, the definite Riemann integral in 3n 
(n=2,3), vector integral calculus and integral theorems. 
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MT200:CALCULUS OF SEVERAL VARIABLES

1 Function of several variables

Objectives for learning unit1

This learning unit covers domain, limits and continuity of the functions of several vari-

ables. The objectives of this learning unit are

(i) To define and identify the domain where the function is defined.

(ii) To sketch the domain.

(iii) To define and evaluate limits of the function.

(iv) To Use the limits to analyze the continuity of the function at a given point.

Functions of several variables refer to functions which involve more than one independent

variables.This means that more than one independent variables are mapped to a single

real number. If to each point (x, y) of xy-plane is assigned z, then z is said to be given

as a function of the two real variables x and y. Consoder the following equations

z = x2 − y2. (1)

z = x sinxy. (2)

u = xyz. (3)

u = x2 + y2 + z2 − t2. (4)

(5)

Equations (1) and (2) are functions which involve two independent variables, equation

(3) is a function which involves three independent variables and equation (4) is a function

which involves four independent variables.

Functions of three or more variables differ slightly from functions of two variables. For

this reason, the emphasis will be on the functions of two variables.
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1.1 Domain and Range

A domain of a function is a set of independent variables on which a given function is

defined (in many cases the domain is also refered to as a domain of definition).

A range of a function is a set of all resulting values of the dependent variables after

substituting the values of the domain.

Example

Describe and sketch the domain of the following functions

(i) f(x, y) =
1

x− 2y

(ii) g(x, y) =
√

25− x2 − y2

(iii) arc sin (x2 + y2 − 2).

Solutions

(i) The function in item (i) can not be defined when x = 2y. Therefore the function is

defined when x 6= 2y, hence the Domain={(x, y): x 6= 2y}

(ii) For the function to be defined, it requires that

25− x2 − y2 ≥ 0,

x2 + y2 ≤ 25.

Domain={(x, y): x2 + y2 ≤ 25}
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1.2 Limits and continuity

1.2.1 Limits

Let z = f(x, y) be given in a domain D, and let (x1, y1) be a point in D, then the equation

lim
x→x1,y→y1

f(x, y) = L (6)

means that, given ε > 0. a δ > 0 can be found such that for every (x, y) in D and with

neighbourhood (x, y) of radius δ, one has

0 <
√

(x− x1)2 + (y − y1)2 < δ −→ |f(x, y)− L| < ε (7)

Thus if the variable point (x, y) is sufficiently close to its limiting position (x1, y1), the

value of the function is as close as desired to limiting value L. Consider the following

example where we will use ε− δ to prove the limit.

Example

Use the definition of limits to prove that

lim
(x,y)→(1,3)

2x+ 3y = 11 (8)

Proof.

We need to show that ∀ε > 0, ∃δ > 0 such that

0 <
√

(x− 1)2 + (y − 3)2 < δ −→ |2x+ 3x− 11| < ε. (9)

Using triangular inequality, we have

|2x+ 3x− 11| = |2x− 2 + 3x− 9| ,
= |2(x− 1) + 3(y − 3)| ,
≤ 2 |x− 1|+ 3 |y − 3| .

Since |x− 1| <
√

(x− 1)2 + (y − 3)2 and y − 3 <
√

(x− 1)2 + (y − 3)2, then it follows

that |x− 1| < δ and |y − 3| < δ.

0 <
√

(x− 1)2 + (y − 3)2 < δ −→ |2x+ 3x− 11| < 2δ + 3δ = 5δ.

From (9), the suitable choice for δ is 5δ = ε−→δ =
ε

5
. This completes the proof.

1.2.2 Evaluation of Limits

Computation of limits for functions of several variables involve direct substitution of values

of variables into the function. However, the direct substitution is not always possible for
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rational functions, as this may result into indeterminate (undefined) form. If this form

is obtained, we have to employ other techniques that will enable us to determine the

required limits if they exist. The quickest technique is to factorize both numerator and

denominator and cancel out the common factors. If this is also impossible we have to use

the following techniques;

(i) Different paths method.

(ii) General path method.

1.2.3 Different paths method

In this method one can consider two different paths, for example y = x, y = 0. Limit

of a function is said to exist if the limiting values for both paths taken are the same.

Otherwise the limit does not exist.

Example

Evaluate the limit of the following function if it exists;

lim
(x,y)→(0,0)

xy

x2 + y2
(10)

Solution

When x and y are directly substituted in the equation we have

(0)(0)

02 + 02
=

0

0

which gives indeterminate form, therefore we use different paths method;

Let’s consider two paths y = 0 and y = x,

y = 0→ lim
x→0

0 = 0.

Consider y = x,

y = x→ lim
x→0

1

2
=

1

2
.

Since 0 6= 1
2
, the limit does not exist.

1.2.4 General path method

In this method, one path y = mx is considered. The limit of a given function will exist if

for any choice of m (where m is any natural number), the limiting values of the function

are the same.
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1.2.5 Properties of Limits

The following theorem will help us to understand the properties of limits’ operations.

Theorem 1 Let u = f(x, y) and v = g(x, y) both be defined in the domain D of the

xy-plane. Let

lim
(x,y)→(x1,y1)

f(x, y) = u1, lim
(x,y)→(x1,y1)

g(x, y) = v1. Then

(i) lim
(x,y)→(x1,y1)

[f(x, y) + g(x, y)] = u1 + v1.

(ii) lim
(x,y)→(x1,y1)

[f(x, y).g(x, y)] = u1.v1.

(iii) lim
(x,y)→(x1,y1)

[
f(x, y)

g(x, y)

]
=
u1
v1

.

1.3 Continuity of function

The function of two variables (x, y) is said to be continuous at a point (x0, y0) if and only

if the following three conditions are satisfied;

(i) f(x0, y0) is defined.

(ii) lim(x,y)→(x0,y0) f(x, y) exists.

(iii) lim(x,y)→(x0,y0) f(x, y) = f(x0, y0)

Example1

Discuss the continuity of f(x, y) at (0, 0) if

f(x, y) =


3x2y

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

Solution

Using the three conditions for continuity, Condition (i) holds f(0, 0) = 0 which shows

that the function is defined at a point (0, 0).
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To determine whether the limit of the function exists, we use general path method

Let y = mx,

lim
x→0

3mx3

x2(1 +m2)
= lim

x→0

3mx

(1 +m2)
= 0,

lim
x→ 0

y → 0

3mx3

x2(1 +m2)
= f(0, 0).

Therefore the limit exists and function is continuous at a point (0, 0).
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MT200:CALCULUS OF SEVERAL VARIABLES

1 Function of several variables

Objectives for learning unit2

This learning unit covers Partial derivatives and differentiability of the functions of several

variables.

The objectives of this learning unit are

(i) To define and compute the partial derivatives of the functions of several variables.

(ii) To define differentiability and determine whether the given function is differentiable.

1.1 Partial derivatives

Let z = f(x, y) be defined in a domain D and let (x1, y1) be a fixed point. The function

f(x, y1) then depends on x alone and is defined in an interval about x1. Hence its derivative

with respect to x at x = x1 may exist.If it exists it is called the partial derivative of f(x, y)

with respect to x at (x1, y1) and is denoted by;
∂f

∂x
(x1, y1) or

∂z

∂x
(x1, y1). Thus by definition

of derivative, one has

∂f

∂x
(x1, y1) =

∂z

∂x
= lim

∆x→0

f(x+ ∆x, y1)− f(x1, y1)

∆x
, (1)

The partial derivative
∂f

∂y
(x1, y1) is defined similarly, we now holds x constant and differ-

entiate f(x1, y) with respect with y. Using the definition we have;

∂f

∂y
(x1, y1) =

∂z

∂y
= lim

∆y→0

f(x1, y1 + ∆y)− f(x1, y1)

∆y
. (2)
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The notations fx, fy or zx, zy are commonly used for partial derivatives with respect to

x and y respectively. The partial derivatives
∂f

∂x
(x1, y1) and

∂f

∂y
(x1, y1) are interpreted

as slopes of the tangent to the curve at which both planes x = x1 and y = y1 cut the

surface(since z = f(x, y) represents a surface).

If the point (x1, y1) is now varied, we obtains a new function of two variables, the function

fx(x, y), similarly the functions fy(x, y). This definition can be extended to functions of

three or more variables.

If x2 + y2 − z2 = 1,then

Solution

2x− 2z
∂z

∂x
= 0, 2y − 2z

∂z

∂y
= 0,

∂z

∂x
=
x

z
,
∂z

∂y
=
y

z
(z6= 0).

Activity

(i) If w = xuv + u− 2v, obtain wx, wu, wv.

(ii) Given f(x, y) = x2 + 3y, find fx and fy in terms of limits.
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1.2 Differentiability

In forming partial derivatives
∂z

∂x
and

∂z

∂y
, the changes ∆x and ∆y in x and y were

considered separately. Now we consider the effect of changing x and y together at the

same time. Let (x, y) be a fixed point in D and let (x + ∆x, y + ∆y) be a second point

in D, then the function z = f(x, y) changes by an amount ∆z in going from (x, y) to

(x+ ∆x, y + ∆y), therefore

∆z = f(x+ ∆x, y + ∆y)− f(x, y) (3)

∆z is defined as a function of ∆x and ∆y with property that ∆z = 0 when ∆x = 0 and

∆y = 0. For example, if

z = x2 + xy + xy2, (4)

then

∆z = (x+ ∆x)2 + (x+ ∆x)((y + ∆y) + (x+ ∆x)((y + ∆y)2 − x2 − xy − xy2,

= 2x∆x+ (∆x)2 + x∆y + y∆x+ ∆x∆y + 2xy∆y + x(∆y)2 + y2∆x+ x(∆y)2

+2y∆x∆y + ∆x(∆y)2,

= ∆x(2x+ y + y2) + ∆y(x+ 2xy) + (∆x)2 + ∆x∆y(1 + 2y) + x(∆y)2 + ∆x(∆y)2.

(5)

Here ∆z can be expressed in the form

∆z = a∆x+ b∆y + c(∆x)2 + e(∆y)2 + f∆x(∆y)2, where, (6)

This is a linear function of ∆x and ∆y plus terms of higher degree. In general, the function

z = f(x, y) is said to be differentiable at the point (x, y) if

∆z = a∆x+ b∆y + ε1∆x+ ε2∆y, where, (7)

a and b are independent of ∆x and ∆y and ε1 and ε2 are functions ∆x and ∆y such that

ε1 → 0 and ε→ 0 as (∆x,∆y)→ (0, 0).

The linear function of ∆x and ∆y

a∆x+ b∆y

is termed as the total differential of z at the point (x, y) and is denoted by

dz = a∆x+ b∆y (8)

If ∆x and ∆y are sufficiently small, dz gives a close approximation to ∆z

∆z = ∆x(a+ ε1) + ∆y(y + ε2)

where a and b are constants. In the above example ∆z has a total differential at each

point (x, y), with

a = 2x+ y + y2, b = x+ 2xy, and ε1 = ∆x+ ∆y(1 + 2y), ε2 = x∆y + ∆x∆y.

The results above can be summarized in the following theorem
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Theorem 1 If z = f(x, y) has a total differential dz = a∆x+ b∆y at a point (x, y) then

f is continuous at (x, y) and a =
∂z

∂x
, b =

∂z

∂y
.

Proof

Set ∆y = 0.Then by

∆z = a∆x+ b∆y + ε1∆x+ ε2∆y, and

lim∆x→0 ε1 = 0 , lim∆y→0 ε2 = 0.

∂z

∂x
= lim

∆x→0

∆z

∆x
= lim

∆x→0

∆x(a+ ε1)

∆x
= lim

∆x→0
(a+ ε1) = a. (9)

Similarly by setting ∆x = 0 we can prove that
∂z

∂y
= b. This completes the proof.

If z = f(x, y) has continuous first partial derivatives in D, then it is possible one to prove

that z has a differential

dz =
∂z

∂x
∆x+

∂z

∂y
∆y (10)

at every point (x, y).

Proof

Let (x, y) be a fixed point in D, if x alone changes, one obtains a change ∆z in z

∆z = f(x+ ∆x, y)− f(x, y),

this difference can be evaluated by the law of the mean for functions of one variable,for y

held fixed, z is a function of x having continuous derivative fx(x, y). Thus

f(x+ ∆x, y)− f(x, y) = fx(x1, y)∆x, where x ≤ x1 ≤ x+ ∆x. (11)

Since fx(x, y) is continuous, the difference

ε1 = fx(x1, y)− fx(x, y), (12)

approaches to 0 as ∆x→ 0, thus

f(x+ ∆x, y)− f(x, y) = fx(x, y)∆x+ ε1∆x. (13)

Now if both x and y change , we obtain a change ∆z in z

∆z = f(x+ ∆x, y + ∆y)− f(x, y) (14)

This can be written as a sum of terms representing the effect of change in x alone and

subsiquent change in y alone.

∆z = [f(x+ ∆x, y)− f(x, y)] + [∆z = f(x, y + ∆y)− f(x, y)] (15)
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f(x+ ∆x, y + ∆y)− f(x+ ∆x, y) = fy(x, y)∆y, where, y ≤ y1 ≤ y + ∆y, (16)

It follows that from continuity of fy(x, y) that the difference

ε2 = fy(x+ ∆x, y1)− fy(x, y) (17)

approaches to 0 as ∆y → 0. Now ∆z gives

∆z = fx(x, y)∆x+ fy(x, y)y + ε1∆x+ ε2∆y (18)

where lim
(∆x,∆y)→(0,0)

ε1 = 0, lim
(∆x,∆y)→(0,0)

ε2 = 0. Thus z has a differential dz as stated

in(10) and hence it is proved. ∆x and ∆y can be replaced by dx and dy thus we have

dz = fx(x, y)dx+ fy(x, y)dy. (19)

This is a common way of writing differentials. This notion can be extended to functions

of three or more variables.For instance, given

w = f(x, y, u, v),We have a differential,

dw =
∂w

∂x
dx+

∂w

∂y
dy +

∂w

∂u
du+

∂w

∂v
dv.

(20)

Given

z = x2 − y2, and w =
xy

z

Find dz and dw.

Solution

dz = 2xdx− 2ydy and dw =
y

z
dx+

x

z
− xy

z2
dz.

The partial derivatives
∂f

∂x
,
∂f

∂y
are in general functions of x and y, they may be differen-

tiated.
∂

∂x
(
∂f

∂x
) =

∂2f

∂x2
,

∂

∂y
(
∂f

∂y
) =

∂2f

∂y2
.

∂

∂y

(∂f
∂x

)
=

∂2f

∂y∂x
,

∂

∂x
(
∂f

∂y
) =

∂2f

∂x∂y
.

∂2f

∂y∂x
and

∂2f

∂x∂y
are called mixed derivatives.

Theorem 2 Given a function of several variables f(x, y). If both mixed partial derivatives

are continuous then they are equal. ie the order of differentiation is not important.
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Example6

Find mixed partial partial derivatives of the function

f(x, y) = x5 + 4x3y − 5xy2.

Solution

∂f

∂x
= 5x5−1 + 3(4)x3−1y − (1)5x1−1y2 = 5x4 + 12x2y − 5y2,

∂

∂y

∂f

∂x
=

∂2f

∂y∂x
= 12x2 − 10y,

∂f

∂y
= (1)4x3y1−1 − 2(5)xy2−1 = 4x3 − 10xy,

∂

∂x

∂f

∂y
=

∂2f

∂x∂y
= 12x2 − 10y.

Activity

Verify that fxy = fyx for the following function;

f(x, y) =
x

x+ y
.



1

MT200:CALCULUS OF SEVERAL VARIABLES

1 Function of several variables

Objectives for learning unit3

This learning unit covers composite and chain rule for the functions of several variables.

The objective of this learning unit is

(i) To apply chain rule to compute derivatives of a composite functions of severals

variables.

1.1 Composite functions and chain rule

1.1.1 Composite functions

Let u = f(x, y), x = g(r, s) and y = h(r, s), u can be expressed in terms of r and s

u = f(x, y) = f(g(r, s), h(r, s)). (1)

The corresponding chain rule need the concept of differential.

From

u = f(x, y), x = g(r, s), y = h(r, s)

Then

du = df =
∂f

∂x
dx +

∂f

∂y
dy,

dx =
∂x

∂r
dr +

∂x

∂s
ds,

dy =
∂y

∂r
dr +

∂y

∂s
ds.

(2)
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substitute for dx and dy into du.

du =
∂f

∂x

(∂x
∂r

dr +
∂x

∂s
ds
)

+
∂f

∂y

(∂y
∂r

dr +
∂y

∂s
ds
)
,

du = (
∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r
)dr + (

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
)ds.

(3)

Since u is finally a function of r and s, we have

du =
∂u

∂r
dr +

∂u

∂s
ds. (4)

Compare equations (3) and (4) we obtain

∂u

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r
,

∂u

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
.

(5)

Example 8

f(x, y) = x2 − 4y2, x = r cos t, y = r sin t. (6)

Find the partial derivatives of f with respect to r and t.

However, the chain rule can be extended for more than two variables. For the case of

three variables, such as

u = f(x, y, z), x = g(r, s), y = h(r, y), z = k(r, s), then,

∂u

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r
+

∂f

∂z

∂z

∂r
,

∂u

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
+

∂f

∂z

∂z

∂s
.

(7)

Example 9

Find the partial derivatives of f with respect to r and s, given

u = f(x, y, z) =
√

2xy2 + 6z2, x = r cos 2s, y = −r sin s, z = res.

1.1.2 The Chain rule

When we are dealing with two sets of functions

y1 = f1(u1.....up),

.

.

.

ym = fm(u1.....up)

(8)
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and
u1 = g1(x1.....xn),

.

.

.

up = gp(x1.....xn)

(9)

When functions u1.....up are substituted in the functions y1.....ym, one obtains composite

functions
y1 = f1(g1(x1.....xn).....gp(x1.....xn)) = F1(x1.....xn),

.

.

.

ym = fm(g1(x1.....xn).....gp(x1.....xn)) = Fm(x1.....xn).

(10)

When we use Chain rule one can obtain the partial derivatives as we did in composite

functions
yi
∂xj

=
∂yi
∂u1

∂u1

∂xj

+ ..... +
∂yi
∂up

∂up

∂xj

(i = 1....m, j = 1....n). (11)

Thus the formula can be expressed in matrix in which the partial derivatives
∂yi
∂xj

are the

entries in the mxn matrix

∂yi

∂xj

=



∂y1
∂x1

∂y1
∂x2

. . . . ∂y1
∂xn

. . . . . .

. . . . . .

. . . . . .

. . . . . .
∂ym
∂x1

∂ym
∂x2

. . . . ∂ym
∂xn


(12)

This is the Jacobian matrix of the mapping (11).
∂yi
∂xj

involves two other Jacobian matrices

∂yi

∂uj

=



∂y1
∂u1

∂y1
∂u2

. . . . ∂y1
∂up

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .
∂ym
∂u1

∂ym
∂u2

. . . . ∂ym
∂up


(13)
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and

∂ui

∂xj

=



∂u1

∂x1

∂u1

∂x2
. . . ∂u1

∂xn

. . . . . .

. . . . . .

. . . . . .

. . . . . .
∂up

∂x1

∂up

∂x2
. . . ∂up

∂xn


(14)

The Chain rule states that the product of
∂yi
∂uj

and
∂ui

∂xj

is equal to
∂yi
∂xj

.

∂yi
∂xj

=
∂yi
∂uj

∂ui

∂xj

. (15)

This equation is called the general Chain rule.

Example

y1 = u1u2 − u1u3, y2 = u1u3 + u2
2,

u1 = x1 cosx2 + (x1 − x2)
2, u2 = x1 sinx2 + x1x2, u3 = x2

1 − x1x2 + x2
2.

(16)

Obtain
∂yi
∂xj

matrix.
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1. For the following functions describe and sketch the domain

(a) z1 =
√
9− x2 +

√
y2 − 4.

(b) z2 = ln
(
(36− x2 − y2)(x2 + y2 − 9)

)
.

2. State the range for the following functions

(a) f(x, y) =
√

16− x2 − y2.

(b) g(x, y) =
√

25− x2 − y2.

3. Evaluate the limits of the folowing functions if they exist

(a) lim
(x,y)→(0,0)

x2

x2 + y2
.

(b) lim
(x,y)→(0,0)

x4 − y4

x2 + y2
.

4. Discuss the continuity of f(x, y) at (0, 0) if

f(x, y)=


3x2y

x2 + y2
if (x, y) 6= (0, 0)

0 if (x,y)=(0,0).
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1. (a) z = y sinxy,

(b) z = arc sin(x + 2y)

Determine
∂z

∂x
and

∂z

∂y
.

2. If z =
xy

1 − x− y
use the definition of partial derivative to find

∂z

∂x
and

∂z

∂y
.

3. Evaluate
∂f

∂y
and

∂f

∂y
if f(x, y) =

√
ex+2y − y2.

4. Given f(x, y) = x2 + 3y, find fx and fy in terms of limits.
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